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Abstract

Online social networks have become a powerful venue for political activism. In many cases large,
insular online communities form that have been shown to be powerful diffusion mechanisms of
both misinformation and propaganda. In some cases these groups users advocate actions or
policies that could be construed as extreme along nearly any distribution of opinion, and are thus
called Online Extremist Communities (OECs). Although these communities appear increasingly
common, little is known about how these groups form or the methods used to influence them.
The work in this thesis provides researchers a methodological framework to study these groups
by answering three critical research questions:

• How can we detect large dynamic online activist or extremist communities?
• What automated tools are used to build, isolate, and influence these communities?
• What methods can be used to gain novel insight into large online activist or extremist

communities?

These group members social ties can be inferred based on the various affordances offered
by OSNs for group curation. By developing heterogeneous, annotated graph representations of
user behavior I can efficiently extract online activist discussion cores using an ensemble of un-
supervised machine learning methods. I call this technique Ensemble Agreement Clustering.
Through manual inspection, these discussion cores can then often be used as training data to
detect the larger community. I present a novel supervised learning algorithm called Multiplex
Vertex Classification for network bipartition on heterogeneous, annotated graphs. This method-
ological pipeline has also proven useful for social botnet detection, and a study of large, complex
social botnets used for propaganda dissemination is provided as well.

Throughout this thesis I provide Twitter case studies including communities focused on the
Islamic State of Iraq and al-Sham (ISIS), the ongoing Syrian Revolution, the Euromaidan Move-
ment in Ukraine, as well as the alt-Right.
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Chapter 1: Introduction

The emergence of Online Social Networks (OSNs) as publication and news delivery platforms
Chu et al. (2010) now offers an open and powerful marketing domain with a global, multi-billion
user audience Statista (2016a,b). These large OSNs like Facebook, Twitter, and VKontakte often
share URLs linking users to an array of online media sources so vast as to exhaust fact-checking
resources ?. The result is a powerful marketing domain where users’ ability to evaluate trust-
worthiness is extremely difficult Ferrara et al. (2016a). Deceptive use of these platforms for
geopolitical gain has been observed in traditional political campaigns Ratkiewicz et al. (b) as
well as populist revolutions in Eastern Europe Diuk (2014) and the Middle East ?. The growth
of online communities who supporting extremist has emerged in a variety of areas as well, most
notably being the Islamic State of Iraq and ash-Sham’s (ISIS). Furthermore, the emergence of
nationalist populist movements like Brexit (Mangold, 2016) and the “alt-right” ? have clearly
leveraged OSNs as well. These observations mark a trend toward destabilizing, and at times in-
humane, activist movements that are formed and fomented online. The role of social interaction
in these online spaces and this tendency towards extremism motivates this work.

OSNs provide a unique social structure due to the relatively low cost of social ties Girvan and
Newman (2002), and little is known about how these structures cognitively influence individual
opinion. This topology appears in some cases to be not only favorable for the spread of pro-
paganda, but these communities also appear to become insular as observed in the 2016 United
States Presidential Election (Benkler et al.). Twitter proved to be a powerful conduit of ISIS
propaganda as well, giving the group a global recruiting platform Berger and Morgan; Berger,
JM; Lahoud et al. (2014). Other extremist groups have followed suit. Gaining understanding of
these online communities requires a means to efficiently identify them at scale which is the focus
of this thesis.

Online activism can be thought of on a continuum. Bloggers often promote awareness of
an identifiable cause. Then that cause is either political or religious, we refer to this behavior
as online activism. When the opinions expressed or groups endorsed would fall on the tails of
nearly any distribution of opinion, that online activism meets the definition of online extremism.
This thesis is particularly interested in the online communities which contribute tot he diffusion
of onlnie extremism. I call these groups online extremist communities (OEC) and define them as
follows:

Online Extremist Community (OEC): A social network of users who collectively engage
in online activism with identifiable discussion cores engaging in online extremism.

Governmental efforts to effectively counter extremist propaganda within OSNs have not been
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successful. Chapter 2 presents a case study of a large activist community on Twitter that shared
content related to the ongoing Syrian Revolution. We refer to this community as the Syrian
Revolution Twitter Community (SRTC) and it contains just over 15,000 Twitter users. Each
member’s timeline exhibits some level of interest or support for ongoing terrorist operations in
Syria and Iraq. This chapter provides illustrative intelligence extractions highlighting the ability
to gain high-level insight through social media. The chapter also highlights methodological
challenges which motivate many of the subsequent chapters of this work.

These groups appear to self organize by utilizing many of the affordances offered by Twitter
to include following, mentioning, and using hash tags. The result is a complex network of
social behaviors that can be mined. Chapters 3 through 6 present a methodological pipeline
for OEC detection and analysis as depicted by Figure 1.1. Throughout this thesis I will detect
OECs of interest by modeling user behavior as a heterogeneous graph. Each dataset in this
work is instantiated using an n-hop snowball sampling strategy Goodman (1961) with manually
identified members of an OEC of interest as ’seed agents.’ The union of seed agents’ social ties
define the search. This technique is then iterated in steps, which has been done in each datasets
presented in this work. Although this technique is not random and prone to bias, it is often used
when trying to sample hidden populations Berger and Morgan (2015b). We discuss this search
technique in detail in Appendix A as well as each of the datasets used within this work. Given
a large snowball sample, unsupervised methods are used to develop a training set, and OEC
detection is performed as a classification task.

In Chapter 3 I present two methodological extensions for OEC detection. The first Iterative
Vertex Clustering and Classification (IVCC) discusses the iterative approach illustrated by the
unsupervised OEC detection and supervised OEC detection boxes in Figure 1.1. The classifi-
cation algorithm, Multiplex Vertex Classification, is novel as well. I use spectral methods to
develop graph-based features for each graph within a heterogeneous representation of users’ fol-
lowing, mentioning, and hash tag behaviors. We evaluate performance with a case study of the
ISIS supporting OEC on Twitter. IVCC detected over 20,000 ISIS supporters with approximately
5000 heuristically generated positive case training examples with F1 scores over 95%. Positive
case training instances within the ISIS case study were identified heuristically by combining
unsupervised methods and Twitter suspension patterns to infer ISIS support. This chapter also
provides a detailed overview of the societal implications of research methods similar to those
presented in this work.

As accurate metadata is not usually available for supervised learning, unsupervised alterna-
tives to identify OEC discussion cores can provide a useful alternative. In Chapter 4 I generalize
the findings of Chapter3 to the case where informative meta-data is unavailable. I introduce to
methods for detecting OEC discussion cores using dense subgraph methods. The dense subgraph
problem has been studied extensively, but I know of no study which applies these methods on
a heterogeneous graph. The first, heterogeneous dense subgraph detection (HDSD) extends the
work presented by Chen and Saad (2012). We develop a user similarity graph based on our
heterogeneous representation of our OSN data and use it to develop a bottom-up user hierarchy.
Like (Chen and Saad, 2012) we then search the hierarchy top down based on an a priori mini-
mum density threshold. The second methodology, ensemble agreement clustering (EAC), takes
a different approach entirely. EAC develops unique user clusterings for undirected and bipartite
user graphs and returns only groups where users are co-clustered across all edge types. I present
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both case studies and partially simulated results using Twitter data.
Extracting information and mining knowledge from large OECs is a challenging problem as

well. In fact it is arguably a research area unto itself. Many traditional methods prove useful in
this regard, and Chapter 5 presents three existing methods to mine novel insight from OECs. The
first, bispectral graph partitioning Dhillon (2001a), is a useful method to cluster user behavior
based on hash tag use. We also present the utility of hash tag co-occurrence graph clustering to
summarize community discussion over time. Finally we illustrate the utility of mining Twitter
data for specific user behaviors by using URL sharing graphs to identify online recruiting Berger
(2014).

As OSNs have become a major venue for news consumption, techniques to use automated
social actors or “bots” to manipulate public opinion have become increasingly sophisticated.
While developing Chapters 2 through 5 I have consistently observed socialbot networks designed
for this purpose. In Chapter 6, I define two specific classes of socialbot networks called Mention
Community Socialbot Networks and Cyborg Socialbot Networks. These structures capitalize
on the robust application programmer interface provided by Twitter’s and have the ability to
artificially manipulate many network science measures used to estimate the credibility or social
influence of specific users and posts. These artificial promotion methods appear able to not only
promote users and content, but also could increase diffusion within or across online communities.
It is becoming increasingly important to understand how these structures promote the diffusion of
propaganda and misinformation online. In addition to defining both classes of socialbot network,
I present a novel, graph-based socialbot network detection methodology. I also provide several
case studies of detected socialbot networks used in United States political discourse, the Syrian
Revolution, and the Euromaidan Movement.

This thesis can be thought of as a pipeline of methods used to gain insight into online activist
and extremist communities. Figure 1.1 summarizes a sequence of methods that will enable re-
searchers to start with a small set of online activists, identify the larger online community they
belong to, and extract novel insights into the detected community. Appendix A discusses our
collection methods in detail as well as the datasets utilized in this work. Because my collection
methods often return large numbers of users who are not members of the community of inter-
est, I find that one must frame community detection as a supervised learning problem. The first
challenge then is to develop an sufficiently large training set. Chapter 4 presents an unsupervised
method that can be used to identify OEC discussion cores which can be used to quickly develop
large training sets. The output from those methods are positive case and negative case instances
of our community of interest which then can be used to detect the community at scale as a su-
pervised learning task. Chapter 3 provides the detection framework able to accurately detect
these communities as scale. Given a large, detected online extremist community, several existing
methods may be used to mine novel insight. Several of these methods are presented in Chapter 5
and a study of Socialbot Network behavior is provided in Chapter 6.

In addition to these contributions, I provide an in depth discussion of limitations and propose
future research in Chapter 7. In summary this thesis presents a framework for detection and
analysis of OECs at scale and provides an important contribution in this important emergent
area of community detection. My hope is that it not only motivates future research, but also
emphasizes the need for ongoing collaboration among computational and social scientists.
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Figure 1.1: This thesis presents OEC detection as a methodological pipeline. Within each chapter I
collect data using snowball sampling which is discussed in detail in Appendix A. Then given a large
snowball sample, I use unsupervised methods to develop a training set and detect the OEC of interest as a
classification task.
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Chapter 2: From Tweets to Intelligence: Un-
derstanding the Islamic Jihad
Supporting Community on Twit-
ter

2.1 Introduction
Extremist groups’ powerful use of online social networks (OSNs) to disseminate propaganda
and garner support has motivated intervention strategies from industry as well as governments
however early efforts to provide effective counter-narratives have not produced the results de-
sired. Mr. Michael Lumpkin, the director of the United States Department of State’s Center for
Global Engagement, is charged with leading efforts to “coordinate, integrate, and synchronize
government-wide communications activities directed at foreign audiences in order to counter the
messaging and diminish the influence of international terrorist organizations” Dozier (2016). In
a recent interview, Mr. Lumpkin expressed the need for a new approach:

“So we need to, candidly, stop tweeting at terrorists. I think we need to focus on exposing the
true nature of what Daesh is.”

Mr. Michael Lumpkin, NPR Interview March 3, 2016

A logical follow-up question to Mr. Lumkin’s statement would be “Expose to whom?” Recent
literature suggests that “unaffiliated sympathizers” who simply retweet or repost propaganda
represent a paradigmatic shift that partly explains the unprecedented success of ISIS Berger, JM;
Veilleux-Lepage (2015) and could be the audience organizations like the Global Engagement
Center need to focus on. Gaining understanding of this large population of unaffiliated sym-
pathizers and the narratives most effective in influencing them motivates methods to detect and
extract information from large online extremist communities (OEC). However, detecting, moni-
toring, and data-mining targeted OTGSs requires novel methods, and development must include
both data science and regional expertise. We define data science as a set of fundamental prin-
ciples that support and guide the principled extraction of information and knowledge from data,
and in this paper we present the Syrian Revolution Twitter Community (SRTC), a online com-
munity of over 15,000 Twitter users who support one or more of the radical groups engaged in
the ongoing conflicts in Northern Iraq and Syria. We describe how large OECs can offer unique
insights into the unaffiliated supporters who appear critical to ISIS’ success. We then provide an
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example of one method used to excite and grow these OGTSCs in the form of an active social
botnet. The botnet attempts to elevate the social influence of users supportive to Jabhat al-Nusra’s
agenda, while encouraging following ties amongst botnet followers. Our goal is to present two
novel examples of social computing applied to counterterrorism, and motivate the continued
interdisciplinary collaboration required to gain understanding of large online communities and
effectively counter extremist propaganda .

2.2 The Syrian Revolution Twitter Community (SRTC)
On November 13, 2015 much of the world watched as terrorist launched a series of coordinated
attacks in Paris killing 130 people. In near real-time social media erupted with support for the
victims of these attacks, but some online communities viewed the attacks as cause for celebra-
tion. In fact, passive supporting but unaffiliated social media users have become an essential
element of groups like ISIS and Jabhat al-Nusra’s recruiting strategy, possibly aid the motiva-
tion and resourcing for attacks like those seen in Paris Veilleux-Lepage (2015). Large online
social networks like Twitter offer a means to generate large online communities, and many of
the members appear to be “unaffiliated supporters.” In fact, Twitter has suspended over 125,000
ISIS-supporting accounts from August to December of 2015. As ISIS recruiters identify com-
munity members who show increasing levels of radicalization, small teams of social media cadre
have been observed lavishing attention on these recruitment targets and subsequently move the
conversation to more secure online platforms Berger, JM. Less secure but large open platforms
like Twitter enable extremist groups propaganda to gain broad reach. Denying this key terrain
requires novel methods designed specifically to identify and analyze extremist communities em-
bedded in OSNs. Information like key users, powerful narratives, and advanced dissemination
methods can all be extracted from OECs to inform messaging and intervention strategies. Be-
nigni et. al. present Iterative Vertex Clustering and Classification Benigni, Matthew et al., a novel
method to detect large, ideologically organized online communities, using both agent level at-
tributes and network structure. We briefly present the methodology, introduce the SRTC, provide
illustrative analysis of the network, and share ongoing research goals in this section.

2.2.1 Background: From Community Detection to Threat Network Detec-
tion

The application of network science to counter-terrorism has a long historyCarley (2006); Krebs
(2002a); however, the rise of social media and online social networks (OSNs) has motivated
methods to apply network science theory to networks at much larger scale. Community detec-
tion attempts to identify groups of vertices more densely connected to one another than to other
vertices in a network, but networks extracted from OSNs present unique challenges due to their
size and high clustering coefficients. Furthermore, an individual’s social network also often re-
flects his or her membership to many different social groups. Thus in many instances algorithms
that use only network structure do not provide the precision needed to identify OECs Benigni,
Matthew et al.. A sub-class of community detection methods has emerged that attempts to lever-
age node attributes and network structure called community detection in annotated networks.
These methods have been shown to perform well with OSNs because of their ability to account
for a great variety of vertex features like user account attributes while still capitalizing on the
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Figure 2.1: IVCC is an online extremist community (OEC) detection methodology conducted in two
phases. In Phase I either community optimization or vertex clustering algorithms are used to identify
positive and negative case examples to facilitate supervised detection in Phase II.

information provided by the structure of the graph; they also perform well at scale Binkiewicz
et al. (2014); Tang and Liu (2011). However, we find that effective OEC detection requires in-
formation from users’ following, mention, and hashtag behaviors as well. Benigni et. al. present
IVCC, an community detection method designed to extract OECs by modeling users within a
heterogeneous graph structure with annotated nodesBenigni, Matthew et al..

2.2.2 Iterative Vertex Clustering and Classification
Iterative Vertex Clustering and Classification (IVCC) is conducted two phases, and often itera-
tively. In Phase I, unsupervised clustering methods like Newman and Louvain grouping are used
to both identify positive cases labels and remove noise. This pre-clustering facilitates supervised
classification of OEC members in Phase II. At the core of the methodology is the use of both user
level features and rich multiplex network structures offered by OSNs. First the authors construct
Uu×a consisting of a numeric user attributes where u is the total number of users or nodes in the
network. Examples of such attributes are follower count, number of posts, or creation date. Node
attributes could also be developed from other sources of intelligence. Spectral methods are used
to dimensionally reduce network data like following, mention, or hashtag behaviors. By con-
structing symmetric graphs of users’ following F and mention M relationships, and a weighted
bipartite graph H of hash tags in a user’s timeline, lead eigenvectors can then be extracted from
each graph and concatenated with U to form a feature space for classification. Although IVCC
is presented using Twitter data Benigni, Matthew et al., similar methods could be used more
generally with large heterogeneous networks.
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Figure 2.2: The left panel depicts the volume of hashtags used within the SRTC from AUG-NOV 2015.
The right panel highlights the hashtags most explanatory of the increased activiy on November 14, 2015.

Benigni et al. collected a two-hop snowball sample of five popular ISIS propagandists pre-
sented in Carter et al. (2014), resulting in approximately 120,000 Twitter users. With two itera-
tions of IVCC, they removed accounts with high following counts (i.e. politicians, news media
members, celebrities, etc.), and extracted a network of nearly 23,000 ISIS supporters. The results
of this initial work form the seed accounts for the SRTC.

2.2.3 Threat Network Analysis: The SRTC
CASOS is currently extending IVCC to dynamically monitor extremist online communities. By
using historical results and active learning, we update the SRTC based on the recent community
activity. Currently the community contains just over 15,000 supporters, where we define a sup-
porter as a Twitter user who positively affirms the leadership, ideology, fighters, or call to Jihad of
any of the known Jihadist groups engaged in ongoing operations in Northern Iraq and Syria. The
majority of tweeters voice support for ISIS or Jabhat al-Nusra though other groups are present.
The size of this community offers insights not easily gleaned from randomly sampled Twitter
data or manually developed datasets as will be highlighted in the remainder of this section.

Though many demographical analyses could be useful, for conciseness we will use tempo-
ral network activity patterns to illustrate information extraction from OECs. The Twitter REST
API limits collection to a tweeter’s last 3,200 posts which forces us to normalize daily volume.
Some tweeters have more than 3,200 posts in the past 6 months, and quite a few of our tweet-
ers have not posted in over 90 days. Identification of dormant users could provide insight into
the radicalization process, but will not be analyzed or discussed in this work. We estimate the
SRTC’s daily volume by normalizing based on the number of tweeters in our dataset who have a
collected tweet before and after any given day which often highlights current events that stimu-
late this community. A simple news search of events on days of increased activity often reveals
operational events in Syria, Northern Iraq, or large scale terror attacks. Similar analysis of hash
tag trends often provides richer insight. Figure 2.2 highlights temporal analysis of SRTC hash
tag use. The left panel of depicts hash tag frequencies over time, while the right panel depicts
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trending hashtags on 13-14 November, 2015. Size in the word cloud connotes frequency, and
color denotes how anomalous a particular tag’s frequency was when compared to a 6 months av-
erage. The community’s reaction to the 13 November, 2015 Paris attacks is illustrated with both
increased volume and trending hashtags. Increased hash tag volume depicted in the left panel
of Figure 2.2, coupled with the corresponding hash tag trends in the right panel give startling
insight into the unique nature of this online community. Ongoing operations in Syria provide
another example. The hash tag Ù�Ù§Ø¯Ø¨Ø²Ø�Ù, translated Zabadani, increases tenfold in terms
of daily frequency on 15 August and 18 September, 2015. Both dates refer the breakdown of
ceasefire agreements in the region Perry (2015). With proper subject matter and language exper-
tise, similar analysis can identify changes in popularity of leaders, organizations, or narratives
over time.

2.2.4 Moving Forward
As a supervised learning methodology, IVCC lends itself to leveraging regional expertise by
learning patterns based on examples. Active-learning refers to supervised algorithms that iter-
atively select examples to be labelled by experts, and have been found substantially increase
performance with far fewer labelled instances. Such methods could enable regional expertise to
be incorporated into the classifier at minimal cost. Furthermore, a user-oriented, server-based in-
terface could enable the regional expert to contribute to the set of annotated instances while con-
ducting his or her own exploratory data analysis. As the set of annotated examples or “training
set” grows new , more nuanced classifiers could be trained. Due to the size and diversity of these
online communities, exploration and interpretation of results is likely a research area unto itself.
One could identify the news sources or propagandists most influential within these communities,
and develop more-informed counter-narratives and strategic communications strategies. The
challenge in developing tools and methods to facilitate OEC analysis lies in the novelty of the
analytical task. Regional experts cannot yet articulate exactly what they want methods to pro-
vide, and researchers are challenged to understand what information extractions are most useful
to senior leader information requirements. Establishing online tools that provide illustrative anal-
yses and capture feedback while end users to explore large communities would likely accelerate
research efforts aimed at countering groups like ISIS.

2.3 The FiribiNome Social Botnet: sophisticated promotion
of propaganda to excite a community

While analyzing the SRTC, as well as a similar dataset focused on online dialogue focused on the
Russian occupation of Crimea, we observe accounts that tweet with high daily volume, but each
tweet or retweet simply contains a string of @mentions. In this section we analyze a network of
social bots used to promote specific online activists or propagandists.

Social bots, software automated social media accounts, have become increasingly common
in OSNs. Though some provide useful services, like news aggregating bots, others can be used
to shape online discourse Abokhodair et al. (2015). ISIS’ use of bots has been well documented
Berger (2014), and their competitors are following suit. Social botnets are teams of software
controlled online social network accounts designed to mimic human users and manipulate dis-
cussion by increasing the likelihood of a supported account’s content going viral. The use of
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Figure 2.3: Depicts mention behaviors and their effects within the FiribiNome Social Botnet. The left
panel depicts two scaled time series. The red circles and smoothed trend line depict the number of daily
mentions by botnet members. The blue circles and corresponding trend line depict botnet followers’
mentions of benefactor accounts. The association between the two series implies the botnet was able to
generate discussion about benefactor accounts among its followers. The right panel depicts the mention
network of the FiribiNome social botnet. The vertices are user accounts. The plot depicts how botnet
members, red vertices, are used to increase the social influence of benefactors, black vertices, by promot-
ing them to botnet followers, blue vertices. Vertices are scaled by follower count.

bots to influence political opinion has been observed in both domestically Ferrara et al. (2014)
and abroad Forelle et al. (2015), the use of social bots has been documented in the MENA region
Abokhodair et al. (2015), and ISIS use of them motivated a DARPA challenge to develop de-
tection methods Subrahmanian et al. (2016). In isolation, these accounts appear to be producing
spam and relatively harmless, however they are examples of a sophisticated strategy to promote
specific accounts while remaining undetected by Twitter.

2.3.1 SRTC Botnet Analysis
Figure 2.3 depicts the mention activity associated with the a Jabhat al-Nusra supporting social
botnet designed to increase the social influence of a specific set of accounts and encourage fol-
lowing connections between Jabhat al-Nusra supporting tweeters. The botnet consists of two
types of accounts. Botnet members, are depicted by red vertices in the right panel of Figure 2.3,
and consist of 74 accounts exhibiting near identical behavior. Each account follows between 116
and 134 accounts, most of which are botnet members. Their following counts vary from 142
to 322 accounts of which many appear to be real tweeters. They come online for 38-58 days,
tweet between 71 to 170 times, then go dormant. This behavior can clearly be seen by the red
trend line in Figure 2.3. Their tweets consist of original posts or retweets containing strings of
@mentions of other botnet members, but occasionally mention or retweet content from what we
call benefactor accounts (depicted by black vertices in the right panel of Figure 2.3). The botnet
account FiribiNome20 illustrates this behavior. In isolation, these accounts appear to be produc-
ing spam and relatively harmless, however our analysis indicates the network of botnet members
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increases the social influence of benefactor accounts. The blue series in the left panel of Fig-
ure 2.3 and corresponding blue vertices in the right panel depict the mention activity of the 843
active botnet followers as of February 2016. The left panel depicts follower accounts’ mentions
of benefactor accounts and the temporal relationship between the activity associated with each
account type implying the botnet effectively promotes discussion of benefactor accounts. How
much discussion is generated remains an open question. Due to the large number of extremist
accounts suspended by Twitter, the number of botnet followers active in the summer of 2014
was likely much larger. This mention behavior exhibited by botnet members could also trig-
ger Twitter’s recommendation system to recommend following ties between botnet followers,or
encourage botnet followers to follow benefactors.

Examples of benefactor accounts are depicted in Table 2.1; each representing a slightly dif-
ferent style and type of messaging commonly observed in the SRTC. Dr. Hani al-Sibai is a
London-based radical Islamic Scholar cited by Ansar al-Sharia as one of five influential moti-
vators of Tunisian terroristsTunisias and Game (2013). @ba8yaa or ”Daesh are the Enemy ”
attempts to discredit ISIS through satire and counter-propaganda and could prove informative in
development of counter-narratives. There are also many accounts that present the appearance
of reporting near-real-time news like @Ghshmarjhy, while other accounts promote third party
applications like @Almokhtsar and @FiribiNome12. We have found some of these applica-
tions request permission to tweet or follow users on the tweeter’s behalf. These highly followed
and highly mentioned accounts each could offer insight into the sophisticated methods used to
leverage social media.

Account Follower Count Messaging Type
@Hanisibu 104K Islamic Scholar
@ba8yaa 1,272 anti-ISIS satire/propaganda
@Ghshmarjhy 6,644 Syrian revolution updates
@Almokhtsar 164K app: MENA news feed

Table 2.1: Depicts four account promoted by the FiribiNome social botnet. Each account represents a
slightly different style and type of messaging.

2.3.2 Moving Forward
It is possible that botnet structures with similar mention behavior could be developed in a more
sophisticated manner. Larger networks with more human-like behavior would be much more
challenging to detect. The FiribiNome botnet could simply represent a proof of concept explain-
ing its lack of activity since 2014. Although simple heuristics like average mentions per tweet
enabled us to detect the botnet, more advanced detection strategies are needed to determine if
more sophisticated botnets are influencing the SRTC. Methods of operationalizing this type of
intelligence are worth exploring as well. It is possible that similar mention behaviors could be
used to target specific online communities with counter-narratives. Again, the need for an in-
terdisciplinary collaboration between the data scientist, regional expert, and decision maker is
needed to identify opportunities for useful intelligence extraction.
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2.4 Conclusion
We have highlighted the potential of extracting intelligence from large online extremist commu-
nities (OECs) and presented illustrative examples with a goal of motivating continued interdis-
ciplinary collaboration. We have also presented the SRTC dataset as an example of an OEC to
emphasize how detecting and monitoring extremists can be an important tool in understanding
the passive support structure essential to the distribution of extremist propaganda. Furthermore,
these methods could facilitate identification of sophisticated dissemination techniques used in
these communities and inform our own information operations. Our goal is to refine these meth-
ods and grow a consortium of data scientists, regional experts, and strategic decision makers by
hosting, curating, and reporting on datasets like the SRTC.
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Chapter 3: Online Extremism and the Com-
munities that Sustain It: De-
tecting the ISIS Supporting Com-
munity on Twitter

Introduction
Through an effective social media campaign, the Islamic State of Iraq and ash-Sham (ISIS) has
issued a powerful, global call to arms. On Youtube, Twitter and a host of other social media
platforms, an ethnically diverse set of Jihadists issue a similar call:

IFLm calling on all the Muslims living in the West, America, Europe, and everywhere
else, to come, to make hijra with your families to the land of Khilafah....Here, you
go for fighting and afterwards you come back to your families. And if you get killed,
then ... youFLll enter heaven, God willing, and Allah will take care of those youFLve
left behind. So here, the caliphate will take care of you. (Stern, Jessica and Berger,
JM (2015))

Online Extremism can be defined as advocating support of groups or causes that in any dis-
tribution of opinion would lie on one of the “tails” Lake (2002). With respect to ISIS’ barbarous
online marketing campaign, the amount of online activity generated by their activism has been
shocking, and its effect in the offline world has been significant. As of January, 2015, United
States intelligence sources estimate ISIS had between 9,000 and 18,000 fighters in Iraq and Syria
Starr (2015). Although the majority of ISIS’ fighters are from the Middle East and North Africa
(MENA), a surprising number of fighters have arrived from the Western world. ISIS’ message
has global reach and has even motivated lone wolf attacks in Canada Logan (2014), France
Wikipedia (2015), and the United States Yan (2015).

Not all members of ISIS’ online community display the same levels of online extremism.
Some claim unaffiliated sympathizers who simply retweet or repost propaganda represent a
paradigmatic shift explaining ISIS’ unprecedented online success Berger and Morgan (2015b);
Berger, JM; Veilleux-Lepage (2014, 2015). In many cases these unaffiliated users’ activity, al-
though offensive to many, is not in clear violation of law or “The Twitter Rules twi.” However,
this large body of “passive supporters” contribute to the volume of ISIS related content prolif-
erated on Twitter and appears to be a vital component of ISIS social media campaign. These
individuals are therefore of interest to any effort to counter online extremism. Some of these
passive sympathizers become recruiting targets. ISIS uses small teams of social media users to
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lavish attention on the potential recruits and move the conversation to more secure online plat-
forms Berger, JM. Thus, while Twitter may not be the place where recruitment ends, growing
evidence suggests that identifiable patterns of recruitment begin on Twitter.

The primary goal of this work is to provide methods allowing researchers to gain insight into
this online social network of unaffiliated sympathizers, propagandists, fighters and recruiters,
and how these users interact to create a thriving online extremist community (OEC). We argue
that such understanding is needed to create counter-narratives tailored to the online populations
most vulnerable to this type of online extremism. To do so, we must first solve another problem
- identifying an OEC on Twitter. This task is difficult for three reasons. First, the size of OECs
varies and is often unknown. With respect to ISIS, it has been estimated that the OEC is between
46,000 and 70,000 strong Berger and Morgan (2015b). However, the relatively small intersection
between existing datasets maintained by activists and researchers indicates the group could in fact
be much larger. Second, current social media community detection methods require a great deal
of manual intervention, or provide unacceptable precision via automated methods - there is thus
an existing tradeoff between manual coding of the data and highly inaccurate classification tools
in the existing literature.

As ISIS’ popularity has grown, so too has its opposition; thus the ISIS OEC and extremist
groups in general tend to be covert in that they actively attempt to avoid some form of detection.
Twitter now systematically identifies and suspends user accounts associated with the group Ross
et al. (2015). In fact, Twitter has initiated a systematic campaign to neutralize ISIS’ use of the site
and announced in March of 2016 the suspension of over 125,000 ISIS supporting accounts in a
six month period Calamur (2016). Furthermore, activist groups like Anonymous and Lucky Troll
Club have used crowd sourcing to identify and expose ISIS OEC members on Twitter Gladstone
(2015a,b); Poe. These attempts to limit ISIS’ use of social media platforms has resulted in a
predator-prey-like system where the ISIS OEC on Twitter has begun show systematic attempts
to make the network anonymous and resilient.

Our work makes three major contributions to the literature. First, we present Iterative Vertex
Clustering and Classification (IVCC), a novel approach to detect and extract knowledge from
OECs. Our approach utilizes community optimization methods in conjunction with multiplex
vertex classification (MVC), a classification method used on heterogeneous graphs that leverages
the rich data structures common to many OSNs like user meta-data, mentioning, following, and
hash tag use.Capitalizing on this rich structure enables us to outperform existing methods with
respect to recall and precision which will be shown in Section 6.5.

After considering the merits of our approach, we then turn to the second major contribution of
this work, an illustrative case study of the ISIS OEC on Twitter. By searching known members’
following ties and partitioning the resultant network, we identify a community of over 22,000
Twitter users whose online behavior contributes to the online proliferation of ISIS propaganda.
We leverage clustering and Twitter suspensions to infer positive case instances with our classifier
which is able to partition our training set with 96% accuracy. This offers significant improvement
over existing methods, and we claim this makes our output uniquely valid for the study of online
radicalization. A sample de-identified dataset Benigni and an R tutorial Benigni (2017) are
available as well.

Finally, we discuss an ethical framework for the implementation of methods similar to IVCC.
We highlight the framework presented in Walsh and Miller (2016) of: methods, context, and
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target, and we draw distinctions in context between diplomatic and intelligence applications of
social media mining.

We structure this article as follows: In Section 3.1 we discuss related work and highlight
the limitations of common community detection methodologies with respect to OEC detection.
Section 3.2 provides a detailed overview of our proposed community detection methodology,
followed by an illustrative case study of the ISIS OEC on Twitter in Section 3.3. Section 6.5
provides a detailed discussion of the relative performance of IVCC, and Section 3.5 provides a
case study of the ISIS supporting OEC on Twitter and illustrative knowledge extractions useful
for counter-messaging or intelligence purposes. We then discuss the societal implications and
limitations associated with the potential uses of our methods in Section 3.6, and propose future
research in Section 5.6.

3.1 Background
Krebs Krebs (2002a,b) was the first to cast large-scale attention on network science-based counter-
terrorism analysis with his application of network science techniques to gain insight into the
September 11, 2001 World Trade Center Bombings. Although similar methods were presented
years earlier Carley et al. (1998), the timeliness of Krebs’ work caught the attention of the West-
ern world and motivated a great deal of further researchCarley (2006); Carley et al. (2003);
Diesner and Carley (2004); Koschade (2006); Latora and Marchiori (2004); Ressler (2006); Top
(2009). Much of this work focused on constructing networks based on intelligence and using
the network’s topology to identify key individuals and evaluate intervention strategies. The rise
of social media has introduced new opportunities for network science-based counter-terrorism,
and some foresee social media intelligence (SOCMINT) as being a major intelligence source in
the future Harman (2015). This presents a fundamentally different counter-terrorism network
science problem. Roughly, as opposed to using information about individuals to build networks,
we now use networks to gain insight into individuals. Typically, we are also trying to identify
a relatively small and possibly covert community within a much larger network. Such a change
requires methodologies optimized to detect covert networks embedded in social media.

The problem of community detection has been widely studied within the context of large-
scale social networks Papadopoulos et al. (2011). Community detection algorithms attempt to
identify groups of vertices more densely connected to one another than to the rest of the network.
Social networks extracted from social media, however, present unique challenges due to their
size and high clustering coefficients Girvan and Newman (2002). Furthermore, ties in online
social networks like Twitter are widely recognized to represent different types of relationships
Boccaletti et al. (2006); Joseph and Carley (2015); Miller et al. (2011a); Wang et al. (2010).

The algorithms of Newman Newman (2006) and Blondel Blondel et al. (2008) are recog-
nized as a standard for comparison for community detection within network science. Within the
broad landscape of all community detection algorithms, the work of both Newman and Blon-
del fall under the umbrella of what is more accurately referred to as community optimization
algorithms. In community optimization algorithms, the graph is partitioned into k communities
based on an optimization problem that centers around minimizing inter-community connections
are minimized and k is unspecified. Surprisingly, both Newman and Blondel operationalize this
minimization problem as a maximization one, where they maximize modularity. The modularity
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of a graph is defined in Equation C.1. In Equation C.1, the variable Ai,j represents the weight of
the edge between nodes i and j, ki =

∑
j Ai,j is the sum of the weights of the edges attached to

vertex i, ci is the community to which vertex i is assigned, δ(u, v) is the inverse identity function,
and m = 1

2

∑
i,j Ai,j .

Q =
1

2m

∑
i,j

= [Ai,j −
kikj
2m

]δ(ci, cj), (3.1)

Eaton and Mansbach Eaton and Mansbach (2012) have introduced methods from constrained
clustering literature to enable semi-supervised community optimization where a subset of ver-
tices have known memberships as well. While such algorithms work well for certain classes
of problems, community optimization algorithms have shown limited ability to detect threat net-
works embedded in social media when the group maintains connections with non-group members
Miller et al. (2011a). Community optimization is also unable to effectively account for multiplex
graphs or graphs with multiple connection types. Like community optimization, graph partition-
ing finds partitions by minimizing intra-group connections; however, the number of groups, k,
is fixed Papadopoulos et al. (2011). Covert network detection is then best described as a spe-
cial case of graph partitioning where the partition is binary (or in other words, where k = 1)
Smith et al. (2013). Smith et al. Smith et al. (2013) effectively use this viewpoint to model spa-
tiotemporal threat propagation using Bayesian inference, however their method does not extent
to multiplex or multimode graphs when applied to social media. To do so, other methods must
be used.

In recent years, another sub-class of community detection methods has emerged, community
detection in annotated networks. This body of work attempts to effectively incorporate node
level attributes into clustering algorithms to account for noisiness of social networks embed-
ded in social media. Vertex clustering originates from traditional data clustering methods and
embeds graph vertices in a vector space where pairwise, Euclidian distances can be calculated
Papadopoulos et al. (2011). In such approaches, a variety of eigenspace graph representations
are used with conventional data clustering and classification techniques such as K-means or hier-
archical agglomerative clustering, and support vector machines. These methods offer the practi-
tioner great flexibility with respect to the types of information used as features. Vertex clustering
and classification methods have been shown to perform well with social media because of their
ability to account for a great variety of vertex features like user account attributes while still
capitalizing on the information embedded in the graph; they also perform well at scale Tang and
Liu (2011); Wang et al. (2010). Wang et al. (2010) introduces a vertex clustering framework, So-
cioDim, which detects communities embedded in social media by performing vertex clustering
where network features are represented spectrally and paired with user account features. Very
similar methods are also presented in Binkiewicz et al. (2014). Tang and Liu (2011) then applies
SocioDim to classification, which is analogous to a binary partition of the graph.

These methods show clear promise with respect to covert network detection in social me-
dia as illustrated by Miller et al. (2011a). Eigenspace methods have been shown to adequately
model multiplex representations of various types of social ties in social media Tang et al. (2009),
and early studies of simulated networks indicate they would perform well on threat detection in
social media Miller et al. (2011a). We hypothesize that eigenspace representations of multiplex
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social networks embedded in social media, when paired with user account features and node
level features will provide a more powerful means to detect extremist communities embedded in
social media. Our work utilizes community optimization across multiple graphs in an annotated
heterogeneous network to facilitate vertex classification and detect a targeted covert community.
In sum, we have found that each of the methods listed above offer useful information for classifi-
cation, but a combination of these techniques must be used to effectively detect covert networks
embedded in social media.

3.2 Methods:Iterative Vertex Clustering and Classification
The goal of finding an OEC within a larger dataset can be formalized as attempting to find a rela-
tively small subgraph within a large, annotated, heterogeneous network,G = (V1, V2, .., Vn, E1, E2, .., Em).
The full network G is a directed, weighted graph with vertex sets V1...Vn. Each vertex set con-
tains vertices vn,1..vn,j with one or more edge typesE1, E2, .., Em. We define a subset of targeted
vertices At ⊆ Vt and denote its complement as Ãt. Our goal is to accurately classify each vertex
in Vt as members of either At or Ãt. For example, in our case study we define At as our set of
ISIS OEC members and Ãt as the union of both non-members and Official Accounts, which will
be defined below.

In practice, we will often have partial knowledge of the group and its members, and need
to leverage as much information as possible to identify vertices in At. Our methodology lever-
ages a priori knowledge to search for and detect a covert subgraph in social media by iteratively
utilizing community optimization and vertex classification. Our approach is thus conducted in
two phases. In Phase I, community optimization algorithms and a priori knowledge are used to
gain insight into the larger social network and facilitate supervised machine learning in Phase II.
Phase II partitions vertices, retaining only those in At, thus finding the targeted covert commu-
nity. A diagram of the process can be seen in Figure 1.

3.2.1 Phase I: Vertex Clustering and Community Optimization
Although community optimization and vertex clustering methods will often fail to accurately
partition our networks into At and Ãt Miller et al. (2011a), we can often look for community
structure within the network to gain insight into the set of vertices in At. For example, if a
subset of vertices from At is known, community optimization can identify clusters containing
a large proportion of those known vertices belonging to At. Community optimization can also
identify groups of vertices that are clearly members of Ãt. The insights gained from community
optimization help provide necessary context with respect to algorithm selection and case labels
for vertex classification in Phase II of our methodology.

3.2.2 Phase II: Multiplex Vertex Classification
Like Tang and Liu (2011) we classify vt,1...vt,j using a set of features extracted from the users’
social media profiles and spectral representations of the multiplex ties between Vt. We denote
these spectral representations as UVt×Vt;Ei

, where i = 1, ...,m. To develop spectral representa-
tions of our heterogeneous network, we symmetrize the graphsW = GVn×Vn;Em for ∀Em. These
symmetric graphs also leverage the strength of reciprocal ties, which have been shown to better
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Figure 3.1: We present an iterative methodology conducted in two phases. In Phase I either community
optimization or vertex clustering algorithms are used to remove noise and facilitate supervised machine
learning to partition vertices in Phase II.

indicate connection in social networks embedded in social media Chiu et al. (2006); Gilbert and
Karahalios (2009); Mislove et al. (2007). In our case study we refer to the symmetrized network
of following ties as Frec, and the symmetrized network of mention ties as Mrec. We then extract
the eigenvectors of the graph Laplacian associated with the smallest two eigenvalues as high-
lighted in Von Luxburg (2007), and we concatenate these matrices as presented in Tang et al.
(2009). This enables us to effectively capture the distinct ties represented in many types of social
media, as well as node level metrics of each graph and user account features.

Users can often use topical markers like hash tags in Twitter, and these can be used to cluster
users with similar topical interests. This results in bipartite graphs, GVt×Vn,Em , where users and
topical markers represent differing node sets, however we with to use these links to find similar-
ities with respect to topical interests among users. To do so we implement bispectral clustering
as introduced by Dhillon (2001a) as a document clustering method. In our case, instead of co-
clustering documents based on word frequency, we co-cluster users based on hashtag frequency
within their tweets. To do so we develop WVt×Vn , where wi,j ∈ WVt×Vn represents the number
of time vertex vn,j appears in the twitter stream of vt,i. To co-cluster vt,1...vt, n we follow the bi-
paritioning algorithm provided in Dhillon (2001a) , which results in eigenvector features similar
to those we defined in the previous paragraph.

The combination of user account attributes, node level metrics from the larger network G,
and spectral features explained above provide a rich feature space. Paired with a reasonably
sized set of labeled vertices, we can detect an extremist community embedded in social media
with supervised classification. If labeling vertices is impractical and node attributes appear infor-
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mative, vertex clustering methods can be used as in Wang et al. (2010). Although we implement
two different binary classifiers in Section 3.3, specific algorithms selected for either phase of this
methodology are the decision of the researcher. The end result of IVCC, an accurate extraction
of vertices At, facilitates a social network analysis of the OEC of interest.

3.3 Case Study: The ISIS OEC on Twitter
To illustrate the utility of our methodology we offer a case study of the ISIS OEC on Twitter. This
case study aims to validate our proposed methodology, present its limitations in terms of ethical
use, and provide illustrative examples of intelligence that can be mined from OECs. Although
the results of our case study provide strong results in terms of accuracy, and we have provided
both traditional and sampling based methods for performance evaluation, we stress that we see
these methods primarily as a means to understand the interests and behaviors of this OEC. As
with any classification technique, false identification of ISIS OEC members must be considered
by the practitioner, and using IVCC to support any type of intervention should be used within the
context of multiple sources of intelligence. We discuss intended use and the societal implications
of similar methodologies in detail in Section 6.5.

3.3.1 ISIS Data
In this section we describe both our collection methods and dataset, but before doing so we
would like to clearly state that we have complied with all of Twitter’s terms of service and
privacy policies Twitter (2016). To develop our dataset, we instantiate our sampling strategy
with five known, influential ISIS propagandists highlighted in Carter et al. (2014). In November,
2014 we conducted a two step snowball sample Goodman (1961) of these users’ following ties.
Snowball sampling is a non-random sampling technique where a set of individuals is chosen as
“seed agents.” The k most frequent accounts followed by each seed agent are taken as members
of the sample. This technique can be iterated in steps, as we have done in our search. Although
this technique is not random and prone to bias, it is often used when trying to sample hidden
populations Berger and Morgan (2015b).

Step one of our search collected user account data for our 5 seed agents’ 1345 unique fol-
lowing ties. Step 2 resulted in account information for all users followed by the 1345 accounts
captured in step 1. Our search resulted in 119,156 user account profiles and roughly 862 million
tweets. This network is multimodal, meaning that it has two types of vertices, and multiplex,
because it has multiple edge types. We represent this set of networks, as a heterogeneous social
network with annotated nodes Steinfield et al. (2008), G with two node classes: users and hash-
tags, and four types of links: following relationships, mention relationships, and user-hashtag
links. Summary statistics of each network are provided in Table 3.2.

The snowball method of sampling presents unique and important challenges within social
media. Users’ social ties often represent their membership in many communities simultaneously
Papadopoulos et al. (2012) . At each step of our sample, this results in a large number of accounts
that have little or no affiliation with ISIS. The core problem of the present work is to identify the
set of users within the 119,156 accounts collected that support ISIS in varying degrees. In order
to do so, we required a rigid definition of what it means to support ISIS. We define the following
three user types of interest:
• ISIS OEC member: Similar to Berger and Morgan (2015b), we code users who unam-
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biguously support ISIS as OEC members. For example, if the user positively affirmed
ISIS leadership or ideology, glorified its fighters as martyrs, affirmed ISIS’ call to Jihad
as a duty for all Muslims, or used pro-ISIS images in their profile (i.e. the ISIS flag or
images of key figures like Abu Musab Al-Zarqawi or Abu Bakr al Baghdadi), we coded
them as OEC members. Furthermore, in light of the growing emphasis placed on “pas-
sive observers”Veilleux-Lepage (2015), we infer retweets as endorsement. Therefore, a
member’s support is relative and in many cases not in violation of local law or Twitter’s
terms of use. However, including this broad continuum of support facilitates the study of
populations that could be more susceptible to radicalization.

• non-member: A user whose tweets were either clearly against ISIS or showed no Jihadist
content.

• official account: We label vertices as official accounts if they meet any of the following
criteria: the user’s account identifies itself as a news correspondent for a validated news
source; the account is attributed to a politician, government, or medium sized company
or larger; or, following Berger and Morgan (2015b), if the account has more than 50,000
followers. This third categorization was deemed necessary as in the process of our case
study, we identified dense following and mention ties between ISIS OEC members and
news media, politicians, celebrities, and other official accounts. Such accounts are inter-
esting in that there higher follower counts and mention rates tend to make them appear
highly central even though they do not exhibit any ISIS supporting behaviors. Official Ac-
counts must be identified and removed for accurate classification of ISIS-supporting, thus
illustrating the utility of an iterative methodology.

3.3.2 IVCC Implementation
By sampling user accounts from G it is clear that the preponderance of accounts collected have
no visible affiliation with ISIS, but we, like Berger and Morgan (2015b), expect an ISIS sup-
porting community to be captured by our sampling strategy. However, community optimization
results of the mention, M , and following, F , networks highlight an interesting phenomenon. We
used the Louvain Grouping method presented in Blondel et al. Blondel et al. (2008) to cluster
M and F . In each case we found that our 5 seed agents were assigned to one of two clusters.
For example, clusters 4 and 6 of the mention network contained all 5 of our seed agents. Dur-
ing the time period between our data collection and analysis, November of 2014 to March of
2015, Twitter has initiated an aggressive campaign to suspend ISIS supporting users Gladstone
(2015c), and we found the clusters containing our seed agents to have excessively high suspen-
sion rates. For example clusters 4 and 6 of the M network had suspension rates of 41% and 21%
respectively as shown in Figure 2. No other cluster had suspension rates above 5%. Figure 2
depicts the size, suspension/deletion rates, and number of users classified as ISIS OEC members
within the 10 largest Louvain groups Blondel et al. (2008) in our weighted, directed network M .
We determined excessively high suspension rates within clusters 4 and 6 to be consistent with
ISIS support. Although these clusters contained ISIS OEC members, modularity based cluster-
ing algorithms like Blondel et al.Blondel et al. (2008), did not provide enough information to
distinguish between ISIS OEC members and other user types. There were still many official and
non-ISIS supporting accounts in each of the clusters with elevated suspension/deletion levels, and
manual sampling indicated that ISIS OEC members existed in clusters without high suspension
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Figure 3.2: depicts the size, suspension/deletion rates, and number of users classified as ISIS OEC mem-
bers within the 10 largest Louvain groups Blondel et al. (2008) in our weighted, directed network M
where edges are defined as the number of times user a mentions user b in his/her Twitter timeline. Our
5 seed agents were assigned to clusters 4 and 6 which had Twitter suspension rates of 41% and 21% re-
spectively. No other cluster had a suspension rate above 5%. Accounts were either deleted by users or
suspended by Twitter between the dates of 24 November, 2014 and 12 April, 2015, which coincided with
Twitter’s aggressive ISIS related account suspension campaign ongoing in the same time period Gladstone
(2015c). We used this combination of factors to select suspended/deleted accounts in groups four and six
as training examples of ISIS OEC members for classification. It is worth noting that our classifier did not
simply find accounts contained in clusters 4 and 6 as is highlighted by the figure as well.
.

rates as well. However, community optimization provided enough context for us to reasonable
use the union of suspended/deleted users in Louvain clusters 4 and 6 in M , as labelled ISIS OEC
member cases for vertex classification. Community optimization also helped us identify the need
to systematically remove official accounts.

We constructed a feature set using spectral representations of theFrec,Mrec, andHuser×user;sharedHashTag

networks as described in Section 3.2. A full list and description of our feature set is included
in Table 3.3. As will be highlighted in Section 6.5, the ISIS OEC is highly interested in the
ongoing operations in Northern Iraq and Syria. As such, they discuss political figures and news
sources extensively. Initial attempts to detect the ISIS OEC contained many official accounts as
previously defined. Therefore, in our first iteration of multiplex vertex classification (MVC) the
task was to remove all official, celebrity, and news media accounts. To do so, we conduct an
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iteration of IVCC by developing a training set of positive and negative examples of official ac-
counts to apply to the rest of our dataset. Our positive case labels for official accounts consisted
of 2,144 known celebrities, politicians, and journalists as well as an additional 873 accounts with
more than 150,000 followers. We labelled the 8,356 suspended/deleted accounts in our dataset
as non-official accounts, and trained a Random Forest classifier Liaw and Wiener (2002) The
Random Forest classifier is an ensemble method that constructs a multitude of decision trees and
uses the mode of these classes to correct for the problem of overfitting associated with many tree
based classifiers. We found its performance to be significantly better than SVM with respect to
accuracy when identifying official accounts to remove from our dataset. The classifier’s superior
performance was likely due to the various types of official accounts creating contingencies better
captured by a tree based classifier. It is worth mentioning that we are not interested in using this
classifier on accounts not contained inG; so we conduct use a train/test split, but also use random
sampling to assess accuracy.

The resultant classifier yielded accuracy of 91.3 % and an F1 score of 75.8% on these heuris-
tically labeled examples. Our post prediction sampling yielded no significant difference with
blind classification of 50 randomly selected accounts. The classifier identified an additional
7,140 news/celebrity/official accounts which we removed from G to form G(−).

Once we were confident that a high percentage of official accounts were removed, we con-
duct an iteration of MVC to identify ISIS OEC members. For this task we train a Support Vector
Machine classifier similar to those presented in Tang and Liu (2011). Again, we labeled the 5,126
accounts marked as suspended/deleted and grouped in Louvain clusters 4 and 6 of the M net-
work ISIS OEC members. We then randomly sampled 10,000 active accounts in Louvain groups
3,4, and 7 in the F network and labelled them as non-ISIS supporting. The resultant classifier
identified 18,335 ISIS OEC members. We then combine the classified 18,335 vertices with our
5,126 labelled vertices and construct At. With our network of suspected ISIS OEC members,At,
we conduct community optimization and network analysis in Section 6.5. Summary statistics of
At are provided in Table 3.4. We acknowledge that our positive case training instances contain
uncertainty, as Twitter suspends accounts for a variety of reasons. We will address this issue and
discuss our efforts to validate model output in detail if the following section.

3.4 Performance and Validation
In this section we will present our results, first for the model’s performance on our training data
set and then we will discuss additional manual validation efforts using our predictions.

Multiplex vertex classification (MVC) extends current methods by applying a combination
of the findings developed in Tang et al. (2009) and Tang and Liu (2011). Given a large multiplex
network with annotated vertices, we are able to accurately identify our targeted community, ISIS
OEC members. We compare MVC to Tang et al. (2009) and Tang and Liu (2011) by constructing
three feature sets:
• θMNV C : represents the present work and consists of user account features and spectral and

node metric representations of the following, mention, and user by user (shared hashtag)
networks.

• θSocioDim: represents Tang and Liu (2011) and consists of user account features and a
spectral representation of the mention network.

26



• θPMM : represents Principal Modularity Maximization (PMM) as presented in Tang et al.
(2009). PMM utilizes eigenspace representations of the following, mention, and user by
user (shared hashtag) networks. For this feature set we used the largest two eigenvectors
of each of the respective networks and subsequently performed canonical correlations to
maximize the correlations between each network’s respective eigenspaces.

A detailed description of each feature set is provided in Table 3.3.
Table 3.1 illustrates MNVC’s superior performance across all performance metrics. Accuracy

is simply defined as the proportion of correctly classified cases in our test set. Precision is the
percentage of positively classified cases that were actually positive. Recall measures the percent-
age of positive cases that were classified positive. Finally, the F1 Score Powers (2011) estimates
accuracy by adjusting for bias associated with skewed class distribution. It is important for us
to reiterate that our measures of performance in this section quantify how well our classifier was
able to differentiate classes in our training data. We acknowledge that we have made assump-
tions to develop our positive case training instances that could reduce precision when applied to
unlabeled data. Therefore, an F1 score of 96% does not necessarily imply that approximately
96% of the users we predict are “true” ISIS-supporting OEC members. However, we have taken
measures to validate model output manually as will be explained at the end of this section.

We se that MNVC outperforms both SocioDim and PMM with respect to each metric. Al-
though our classifier’s performance is relatively high, with approximately 22,000 accounts clas-
sified as ISIS OEC members we would expect more than 900 accounts to be falsely labeled as
ISIS OEC members. We will discuss the application of these methods in detail in Section 3.6.
However, a 4% false positive rate and the varying degrees of “support” observed among passive
sympathizers again imply these methods would best serve as a means to study online populations
that appear vulnerable to online extremism.

With respect to our official account classifier, MNVC and SocioDim performed almost iden-
tically. We hypothesize that this is likely due to the heterogeneous nature of official accounts.
We used this classifier to remove accounts belonging to celebrities, news media, corporations,
NGOs, and governmental organizations. Thus, the positive class likely had many contingencies
associated with it and would be more well suited to a tree based classifier like the Random Forest
algorithm explained in Section 3.2.

Our use of Twitter suspension rates within specific user groups as positive case labels intro-
duces uncertainty as there are many reasons for Twitter to suspend accounts. To address these
limitations, we took several steps to assess the accuracy of our heuristics. This included dis-
cussions with native language speakers and blind sampling of accounts predicted as ISIS OEC
members. Further, our analysis indicated the ISIS classifier generalizes to unlabeled data in ways
that would not suggest biases from our network-based and suspension/deletion-based heuristics.
Many of the accounts labeled by our classifier post content that is barbaric and in clear viola-
tion of The Twitter Rules precluding the use of the service to promote violence twi. There are
other predicted ISIS OEC members whose content does not clearly violate Twitter’s policies and
would generally be considered free speech. However, these users’ content is still consistent with
the description of “passive supporters” presented in Berger, JM; Veilleux-Lepage (2014, 2015).
Finally, in light of Twitter’s continued aggressive program to remove extremist content from
its site Balakrishnan, we performed an additional check of suspension rates in January, 2017.
We found suspension rates of 39%, 7%, and .4% for our predicted classes of ISIS-supporting,
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non-ISIS-supporting, and official accounts respectively. Although these suspension rates do not
conclusively prove any account predicted as an OEC member to be an ISIS-supporter, they do
imply that our methodology identifies communities containing sizable pockets of extremism.

We have, in this section, therefore performed a variety of checks to ensure that our classifier is
able to identify members of the ISIS OEC in ways that outperform other relevant approaches. As
we have noted, there is no way good to assess “ground truth” with pure certainty in our setting,
thus leading to some uncertainty in our validation efforts. However, this uncertainty should be
considered in the context of many other related tasks in social media mining and natural language
processing where the quality of annotation has recently been questioned Blodgett et al. (2016);
Joseph and Carley (2016), even on tasks as seemingly straightforward as dependency parsing
Berzak et al. (2016). While analyses of performance are imperfect here, we have tried in various
ways to address them (e.g. through analyzing suspension rates and qualitative analysis of results),
making our efforts as stringent if not more so than much related work. Future efforts are needed
across the field as a whole in order to better understand how to address these outstanding issues.

3.5 Case Study: The ISIS-Supporting OEC
The challenge of drawing useful intelligence analyses from social media remains an open re-
search problem, but OEC detection offers new opportunities for intelligence and strategic com-
munications experts to gain needed understanding into large populations susceptible to extrem-
ism. The following subsection is intended to provide illustrative intelligence analyses offered by
OEC detection.

The left panel in Figure 3 depicts the ISIS supporting reciprocal mention network, AM,rec,
where color indicates Louvain Grouping. Language drives the most clear division among inter-
network communities and is highlighted in the middle panel. We used LangID as introduced in
? to identify language at the user level. Blue vertices indicate users whose tweet streams identi-
fied as Arabic with probability in excess of 90%, while green vertices depict users whose tweet
streams identified as English with probability in excess of 90%. Yellow vertices indicate users
whose tweets contain a mixture of English and Arabic. A small portion of those users contained
mixed language patterns to include Turkish and Russian. For the most part however, these users
form a bridge between the Arabic speaking and non-Arabic speaking communities in the ISIS
supporting network.

Interesting structure also exists within the Arabic speaking portion of the community. The
relatively small cluster to the far right of the Arabic speaking portion of the community, repre-
sented by yellow vertices in the left panel, consisted of accounts sharing lectures and videos on
Muslim theology. While the majority of these accounts did not overtly promote jihad or support
ISIS, it is interesting to highlight that their follower counts often contained hundreds or thou-
sands of ISIS OEC members. An example of one such account belongs to Dr. Hani al-Sibai who
has been cited by Ansar al-Sharia as one of five influential thinkers from whom the terrorists
in Tunisia obtain their encouragement Tunisias and Game (2013). At this time we are unable
to determine to what degree these accounts provide active support, or if their followers simply
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Figure 3.3: each panel depicts the ISIS supporting reciprocal mention network, AM,rec. The left panel is
colored by Louvain Group, the center panel by user language patterns as detected by his or her tweets, and
the right panel depicts each user accounts status as of March 22, 2015.

present a fertile recruiting landscape for ISIS propagandists.
It also appears that some propagandist accounts use bots to gain stronger influence. The red

and blue groups depicted in the left panel of Figure 4 are visible examples of what we believe
to be bots in our dataset. We believe these to be bots because in each case the groups represent
a fully connected sub-group where each account repeatedly mentions all other members of the
group, as well as a ’parent account’ or accounts. Although relatively few accounts exhibit this
group structure, we hypothesize they are used to elevate the relative popularity of the associated
“parent accounts” and remove them for subsequent analysis.

Figure 4 highlights changes in user activity with respect to time. The left panel depicts ISIS
supporting users where the x-axis details the account creation date and the y-axis gives the aver-
age number of tweets per day for the life of the account. Color indicates the suspension status
of the account, where a black circle indicates the account remains active, while red indicates
the account has been deleted or suspended. The right panel depicts a time series of the tweet
stream of 10,000 randomly sampled ISIS supporting users (black lines). Each time series has a
high level of transparency to illustrate the distribution of daily user activity over time. The red
line depicts the cumulative distribution function of account creation dates within the ISIS sup-
porting network. The plot highlights the creation of many ISIS supporting accounts providing a
high volume of tweets in the fall of 2014. In particular, the large number of high tweet volume
accounts introduced in early October 2014 were likely bots. Though the left panel clearly high-
lights Twitter’s ability to identify and suspend these accounts, their effect is clearly seen in the
right panel, and this highlights the group’s use of bots to possibly generate recruits and/or inflate
the perception of their appeal.

Beyond understandings of the group structure and tweet time series, the role and relative
importance of users within the observed social network network are of interest. To gain insight
into this, we rely on two link types within our dataset: mention and following ties. Reciprocity
has been shown to be a strong indicator of trust within online social networks Chiu et al. (2006);
Gilbert and Karahalios (2009); Mislove et al. (2007), and reciprocal mention ties provided the
most information gain with respect to our ISIS supporting classifier. Co-mention ties also provide
strong indicators of core membership within our ISIS supporting network. Both betweenness and
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Figure 3.4: highlights changes in user activity with respect to time. The left panel depicts ISIS supporting
users where the x-axis depicts account creation date, and the y-axis depicts the average number of tweets
per day for the life of the account. Color indicates the suspension status of the account where a black circle
indicates the account remains active, while red indicates the account has been deleted or suspended. The
right panel depicts 10,000 randomly sampled, ISIS supporting tweet streams in black. Each time series
has a high level of transparency to illustrate the distribution of daily user activity over time. The red line
depicts the cumulative distribution function of account creation dates within the ISIS supporting network.

degree centrality quantify how “trusted” a user is among other members of the network, but trust
alone does not identify core members or help distinguish roles. To account for this we construct
the following metric, which quantifies the proportion of a user’s following ties that are members
of our ISIS supporting network, A. We refer to this metric as ISIS Focus, and use it as a proxy
for the user’s ideological affiliation with ISIS.

ISIS Focus =
fISIS Supporting

ftotal
(3.2)

Figure 5 depicts the bivariate distribution of users classified as ISIS supporting with respect
to degree centrality within the reciprocal mention network (x-axis) and ISIS focus (y-axis). The
dashed black lines depict the median values of the two respective metrics, dividing the plot into
four quadrants. Though the quadrants depicted in Figure 5 do not represent finite delineations
with respect to user role type, we find that both metrics provide useful information when identi-
fying core members

Users with high degree centrality and high ISIS focus (quadrant I in Figure 5) are powerful
disseminators of ISIS’ message. These are often accounts of popular fighters, accounts designed
to look like legitimate news media, or simply popular ISIS propagandists. Those with high ISIS
focus and low degree centrality (quadrant II) represent similar accounts, but with less popularity.
They appear to have ideals almost identical to those in quadrant I, but are either less skilled at
generating a following or relatively new to the network. We also expect recruits to be more
likely identified in quadrant II. Accounts with high degree centrality and low ISIS focus are
highly trusted but not as highly affiliated with ISIS. This quadrant contained accounts that did
not overtly support ISIS but provide information highly relevant to core members like regional
news media and Islamic sermons and educational material. Additionally, there were users who
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Figure 3.5: depicts the distribution of ISIS supporting accounts with respect to degree centrality in the
reciprocal mention network (x-axis) and ISIS focus (y-axis). ISIS focus refers to the proportion of an
individual user’s following ties that are classified as ISIS supporting. The dashed white lines depict the
median values their respective metrics.
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appeared loyal to other jihadist groups such as Jabhat al Nusra or Ahrar al Sham or other popular
causes in the region such as charities associated with Gaza. Finally, users with relatively low
scores in both metrics ( quadrant III) represent passive observers.

These measures are important in that we can use these measures to prioritize additional
searches of the Twitter API. That is, for those users we identified in Step 2 of our sample, we
have not collected accounts from all of their following ties, and can now use a combination of
these metrics to prioritize which accounts to download.

Removing non-ISIS supporting accounts also enables us to understand the topical interests
of ISIS OEC members and how they evolve over time. Such analysis is critical to gain under-
standing and counter ISIS’ narrative and its ability to generates resources. We quantify both the
frequency of various hashtags, as well as the number of distinct actors using them. This enables
us to identify what topics have the broadest appeal, as well as topics that might be the result of a
small set of highly active users. Figure 6 depicts the 369,603 unique hashtags used by ISIS OEC
members in our dataset. Blue points depict Arabic hash tags, and red points depict hashtags in
other languages. Generally, a hashtags frequency and the number of unique users tagging with
it are proportional; however some hashtags, like the three labelled in the figure, seem to have
frequencies inflated by a relatively small, highly active group of users. A closer look at hashtag
1 is translated “Tweet mentions of Allah” and is associated with a Twitter application that offers
to mention God every hour on a user’s timeline. The hashtag is used over 100,000 times but by a
relatively small set of 1648 users. Of these tweets, 75,382 are posted by only 100 users who all
seem to retweet one another’s verses from the Quran and Hadith as well as unique ISIS related
content from the battlefield. In other words these hashtags are used by high volume tweeting
users to systematically link the groups theology with battlefield exploits. We postulate that this
type of analysis could also identify key mouthpieces or propagandists in the network.

More broadly, we can identify the most unifying and energizing topics of the network by
looking at how the most broadly used hashtags change over time. Figure 7 depicts the top 100
non-Arabic hashtags in terms of number of unique ISIS supporting users. The y-axis depicts the
seven day moving average of the respective hashtags frequency over time. Non-Arabic hashtags
with a moving average that reach above 500 tweets per day at any given time period are labelled.

Many of the popular hashtags confirm things we already know about the ISIS supporting
movement. ISIS OEC members focus on events relating to Sunni conflict in the greater MENA
region, and the temporal peaks in Figure 7 reflect those interests. However, some of these hash-
tags offer novel insight. For example, the popularity of #helparakan, referring to a state in
Burma, is consistent with the ISIS Study Group’s assertion that expansion into South Eastern
Asia is one of ISIS’ strategic objectives Strategy and Group. The trending hashtag #EI refers to
‘l’etats Islamic’ and highlights the networks interest in Mehdi Nenmouche, a French jihadist’s
arrest and pending extradition to Belgium in June of 2014 Dickey (2014). Identifying these top-
ics of interest and the influential users tweeting about them could provide useful understanding
of the group’s ’marketing’ objectives and help drive intervention strategies.
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Figure 3.6: depicts the 369,603 unique hashtags used by ISIS OEC members in our dataset. Black points
depict Arabic hash tags, and red points depict hashtags in other languages. Generally, a hashtags frequency
and the number of unique users tagging with it are proportional; however some hashtags, like the three
labelled in the figure, seem to have frequencies inflated by a relatively small, highly active group of users.

Figure 3.7: depicts the smoothed time series of the top 100 ASCII character hashtags in terms of number
of unique users. The series are calculated using a 7 day moving average of each respective hashtags
frequency in our ISIS supporting network. All hashtags whose average is greater than 500 at any given
time are labelled.
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3.6 Societal Implications and Methodological Limitations
The responsible use of social media intelligence and its relationship to individual privacy in
democratic states is an important, open question for policy makers Bartlett (2016); Miller et al.
(2011b); Walsh and Miller (2016). To this end, we acknowledge that our methods could be
unethically employed to identify political opposition or dissidents. Indeed, our classifiers that
did not incorporate analysis of hashtags routinely identified online activism related to a variety
of causes.

Consequently, we join Walsh et al. in their advocation of patient, nuanced political dialog
with respect to developing open source intelligence policy in Western democracies Walsh and
Miller (2016). This policy debate centers around both social media users’ reasonable expectation
of privacy and the ethical implications of mining their online content.

With respect to the latter, the ethical implications of mining online content using our method
vary based on the intended use of the method. We have envisioned here two use cases for IVCC.
First, and most importantly, as Western governments have started to search for diplomatic means
to counter extremist propaganda, IVCC can be as a means to gain understanding of online pop-
ulations vulnerable to extremism. We believe this to be an ethical use of the method, as the
primary intention is to reduce the likelihood of an individual being deceptively coerced into an
extreme ideology. A second use case of IVCC would be for intelligence collection. This use case
certainly could require more restrictive policy depending to intelligence category.

With respect to the former element of policy debate, it is without question that users’ reason-
able expectation of privacy must be kept in mind at all times. A common argument against doing
so is that social media users have the ability to privatize their accounts, or to not use the media at
all. However, these options are often not tenable. Further, although many users understand their
online behavior is used for marketing purposes, they may not be comfortable with their behavior
being used to inform diplomacy or military operations. Indeed, one could assume users would
not consent to the use of their information for intelligence collection.

This distinction between marketing versus intelligence objectives in an important one, partic-
ularly in light of the mission statement for the newly formed United States Department of State’s
Center for Global Engagement:

The State Department is revamping its counter-violent-extremist communications efforts
through a new Global Engagement Center. This center will more effectively coordinate,

integrate and synchronize messaging to foreign audiences that undermines the disinformation
espoused by violent extremist groups, including ISIL and al-Qaeda, and that offers positive

alternatives. The center will focus more on empowering and enabling partners, governmental
and non-governmental, who are able to speak out against these groups and provide an

alternative to ISILs nihilistic vision. To that end, the center will offer services ranging from
planning thematic social media campaigns to providing factual information that

counters-disinformation to building capacity for third parties to effectively utilize social media
to research and evaluation.of State (2016)

For objectives similar to those listed above, the use of IVCC by government agencies would
therefore be subject to similar protocols to those used for behavioral research by institutional
review boards (IRBs). These protocols include a strong push for de-identification - our methods
make no attempt to bind online and offline identities, and agencies using these methods to inform
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messaging efforts could do so with de-identified data. While we acknowledge that the use of
bulk de-identified meta-data has been the subject of concern Walsh and Miller (2016), this issue
is routinely encountered by IRBs in academia as well.

Further, within a context of informed diplomatic messaging, the use of IVCC is thus proximal
to academic research and further, analogous to individually tailored online marketing. Ethical
employment of our methods could be carried out to understand vulnerable online populations and
ultimately preserve civil liberties. Peacetime military information operations aimed at messaging
to specific populations could be viewed similarly of Staff (2014), and implemented with de-
identified data.

The complexity of these issues requires a substantive theoretical framework under which to
characterize these various ethnical concerns. Walsh et al. (2016), who provide a framework
with which to balance the importance of civil liberties with national security in an intelligence
context Walsh and Miller (2016). Their framework is based on the collection method, context,
and target. In our case, social media mining would be our method; however the increasingly
complex combinations of context and target imply the need for nuanced policy. Currently, policy
has started to address the varying expectations of privacy in wartime, peacetime, and counter-
terrorism contexts. However, the onset hybrid warfare that is conducted by state and non-state
actors purposely beneath the threshold of Western military intervention Hoffman (2009) further
complicates policy development.

The intelligence target also has policy implications. Specifically, the purpose and category
of the desired intelligence product needs to be considered. For the purpose of describing a
commander’s operating environment or assessing ongoing operations, authorities could be quite
liberal. Intelligence used to develop military targets or bind online and offline identity would
imply more restrictive policy. As stated by Walsh et al, the increasingly complex nature of
conflict call for patient political dialogue, and policy makers need to ‘take their citizens with
them’ when making arguments for new policy and authorities Walsh and Miller (2016).

In sum, implementation of IVCC for social media intelligence does, on the one hand, require
a more formal framework and more nuanced discussion. On the other hand, however, it is clear
that the method can also be used in many ethical fashions and to improve efforts of national
security.

3.7 Conclusion
The present work makes two major contributions to the literature. First, we develop iterative
vertex clustering and classification (IVCC), a scalable, annotated network analytic approach for
extremist community detection in social media. Our approach outperforms two existing ap-
proaches on a classification task of identifying ISIS supporting users by a significant margin.
Second, we provided an illustrative case study of the ISIS supporting network on Twitter. To
the best of our knowledge, it is the most comprehensive study of this network, and it provides
a variety of important insights that may prove important in better understanding the incredible
proliferation of ISIS propaganda on Twitter. Most notably, we find that:
• Leveraging the multiplex and multinode structures available in Twitter data significantly

improved our algorithm’s ability to accurately identify ISIS OEC members on Twitter.
• Identifying and isolating large portions of an online extremist community offers unique
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insights into the group’s ideology and influence, and helps identify key users and roles.
• IVCC offers promise for making online extremist community detection in social media a

practical reality to inform both diplomacy and defense initiatives.
This case study offers a unique opportunity to infer positively labelled cases based on Twitter

suspensions and clustering techniques. However, it is unlikely that such a large number of labeled
cases would always be available. Thus, implementations using semi-supervised algorithms or
active learning Settles (2010a) would make IVCC more generalizable, and should be a topic
for future research. IVCC is also limited in that it does not account for simultaneous group
membership of users. It is likely that there are jihadists that support various terrorist groups
and allegiances can be dynamic. IVCC does not provide probabilistic clustering or account for
changes in group dynamics over time. Similar to Yang et al. (2013), we would like to extend
this methodology to an overlapping group framework to account for these types of users and
also explore methods to identify temporal change points. Finally, though preliminary results for
IVCC as a methodology are encouraging, they are limited in that we do not provide an empirical
analysis of IVCC with respect to benchmark. We will leave this analysis to future work, due to
the emphasis of this paper being the ISIS case study.

Extremist community detection is an important need in processing social media, and with
such approaches like IVCC, we hope that the influence of groups like ISIS can be counteracted
in the near future.

36



Tables

Model Performance Metric
Accuracy, 95% CI: Accuracy F1

θMNV C 0.96, (0.95, 0.96) 0.93
θSocioDim 0.87, (0.86, 0.88) 0.80
θPMM 0.84, (0.83, 0.84) 0.74

Table 3.1: Performance estimates for the ISIS classifier for feature sets: θMNV C , θSocioDim, and θPMM .
The left column depicts both the point estimates and 95% confidence intervals for accuracy. The right
column depicts the F1 score Powers (2011) associated with each feature set.
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Metric Network
F Frec M Mrec Huserxuser

Reciprocal Reciprocal User by Hashtag
Following Following Mention Mention

From Node User User User User User
To Node User User User User Hash Tag

Link Type directed, undirected, directed, undirected, undirected,
binary binary weighted weighted weighted

Nodes 119 k 119 k 109 k 109 k 106 k x 4 M
Links 23.1M 3 M 14.6 M 1.1 M 27.4 M

Density 0.00163 0.000425 0.00123 0.00018 0.000065
Isolates 0 10888 291 30,047 0
Dyads 0 104 6 425 188
Triads 0 19 0 50 33
Larger 1 8 2 7 6

Table 3.2: Depicts Gfull, the resultant heterogeneous network from our 2-step snowball search of known
ISIS OEC members. The search yielded 400 G of data containing 119,156 Twitter user accounts’ follow-
ing ties, account profiles, and tweets.
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Feature: Source, Description θMNVC θSocioDim θPMM

Creation Date Twitter User Profile X X
Tweet Count Twitter User Profile X X
Follower Count Twitter User Profile X X
Following Count Twitter User Profile X X
Unique Hashtags Twitter User Profile X
In-Degree Centrality Follower x Follower Net-

work
X

Out-Degree Central-
ity

Follower x Follower Net-
work

X

In-Degree Centrality Mention x Mention Network X
Out-Degree Central-
ity

Mention x Mention Network X

Total-Degree Cen-
trality

Follower x Follower Net-
work, Reciprocal Ties

X

Total-Degree Cen-
trality

Mention x Mention Net-
work, Reciprocal Ties

X

Search Step Twitter API Script X
URF a user x 2 matrix with

columns consisting of the
eigenvectors associated with
the 2 largest eigen values
extracted from the graph
Laplacian of our Following
x Following Network with
Reciprocal Ties.

X X

URM a user x 2 matrix with
columns consisting of the
eigen vectors associated
with the 2 largest eigen val-
ues extracted from the graph
Laplacian of our Mention
x Mention Network with
Reciprocal Ties.

X X X

UUxHT a user x 2 matrix with
columns consisting of the
eigen vectors associated
with the 2 largest eigen
values extracted from the
graph Laplacian of our User
x User (Shared Hash Tag)
Network.

X X

Table 3.3: lists and describes features used in each classifier
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Metric Network
AF AF,rec AM AM,rec

Description Reciprocal Reciprocal
Following Following Mention Mention

From Node User User User User
To Node User User User User

Link Type directed, undirected, directed, undirected,
binary binary weighted weighted

Nodes 21,343 21,343 23,031 22,456
Links 1,254,529 94,583 1.6M 220,597

Density .0052 .0008 .003 .0004
Isolates 15 1687 269 0
Dyads 2 58 26 0
Triads 0 10 1 0
Larger 1 6 1 0

Reciprocity .082 1 .016 1
Char. Path Length 3.432 4.44 4.723 15.76
Clustering Coeff. .129 .154 .111 .065

Network Diameter 11 13 1521 2213

Table 3.4: Depicts At, the suspected ISIS OEC member network identified in Section 6.5. Each network
is more dense than its parent network in G.
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Chapter 4: Unsupervised Detection of On-
line Activism and Extremism

4.1 Introduction
Online social networs (OSNs) are increasingly viewed as publication platforms and have become
one one of the top delivery platforms of news in the world Kwak et al. (2010). However, the
proliferation of inflammatory misinformation has forced companies like Twitter, Facebook, and
Google to take measures to counter this type of content (Wakabayashi and Isaac, 2017). This
union of inflammatory content and the dense social structures provided by OSNs provide an
unprecedented environment for propaganda and appears to be contributing to large geopolitical
movements like populism and Islamic terrorism.

Online activism and extremism is emerging as in important component of geopolitics. Mc-
Caughey and Ayers (2013) define online activism as ”a politically motivated movement relying
on the Internet”, and powerful political campaigns are now being waged on OSNs as well (Ferrara
et al., 2014; Forelle et al., 2015; Ratkiewicz et al., a,b). OSNs have curated political discussion
associated with relatively unenexpected electoral outcomes like Brexit (Mangold, 2016) and the
2016 United States Presidential Election (Ferrara et al., 2016a). Effective social-media-aided
political activism has been observed in the Middle East (Abokhodair et al., 2015), as well as in
Eastern Europe (Mungiu-Pippidi and Munteanu, 2009; Szostek). In some cases these powerful
campaigns have organized large numbers of users whos views could be viewed as “extreme.”
Lake (2002) define political extremism using two attributes. Extremists’ political beliefs and
objectives are such that few would find them acceptable. Secondly, extremists lack the means to
achieve their objectives through traditional political means. Our goal in this work is to present
unsupervised methods to detect social media users that promote extremism. Clearly, the Isalamic
State of Iraq al-Sham’s (ISIS) rise to power provides an example of how an extremist organization
can effectively use OSNs for strategic messaging and recruitment (Berger and Morgan, 2015b;
Veilleux-Lepage, 2015), but many of the competing factions in Syria currently weild similar on-
line campaigns. Propaganda dissemination within OSNs has become commonplace among many
activist and extremist causes.

In each of these political movements, online communities appear to play a vital role in the
dissemination of news and the shaping of opinion. Insular online communities have been ob-
served in the 2016 United States Presidential Election and proven to be prone to misinformation
Benkler et al.. The results observed with respect to terrorism appear consistent with this phe-
nomenon as well (Berger and Morgan, 2015a; Veilleux-Lepage, 2014). The ability to quickly
identify and understand these communities will be essential to informing effective intervention
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strategies in the future.
Community detection refers to the task of identifying subgroups within a graph where nodes

are more densely connected to one another than to the rest of the graph, and has been studied ex-
tensively. Fortunato (2010) provide an extensive survey, and Papadopoulos et al. (2012) provide
a survey specifically oriented on community detection in social media. Our ultimate goal is to
detect and study online activist and extremist communities. We presented Iterative Vertex Clus-
tering and Classification in Chapter 3 and illustrated the ability to detect large online extremist
communities (OECs) as a supervised learning task, but to make the framework generalize more
broadly tailored unsupervised methods are needed. In Chapter 3 we were able to leverage meta-
data to infer positive case labels which will not often be the case. Unsupervised methods capable
of identifying sets of users who form highly active dense online communities. These are often
referred to as disussion cores (Pei et al., 2014), and could be studied directly or used as positive
case instances for supervised learning. These groups often use tools like following, sharing hash
tags and direct messaging to self organize, their social networks are described by complex graph
structure with many edge types. Such graphs are often referred to as heterogeneous graphs Sun
et al. (2010).

In this paper we present two unsupervised methodologies to identify online discussion cores.
In both cases, the OSN is modeled as a heterogeneous graph, and only groups with interconnect-
edness across multiple edge types are returned. We first present ensemble agreement clustering
(EAC), an ensemble-based methodology that returns only users who are co-clustered across all
defined edge types in the methodology. We then present Heterogeneous Dense Subgraph Detec-
tion, a hierarchical clustering method designed to return only clusters that meet a specific density
threshold. We present case studies of detected subgraphs posting content related to ongoing
conflicts in Syria and Eastern Ukraine.

This manuscript is structured as follows. Section 4.2 will present relevant research related
to community detection in heterogeneous networks as well dense subgraph based community
detection methods. In section 4.5 we present EAC and HDSD and compare the algorithm’ per-
formance when subjected to varying levels of noise. We then present case studies of Twitter com-
munities focused on the Syrian Revolution and Euromaidan Movement in Section 4.5. Finally
we discuss the strengths and limitations of our findings and summarize our results in Sections 4.6
and 4.7.

4.2 Background
The problem of community detection has been widely studied within the context of large-scale
social networks and is well documented in works like Fortunato (2010); Papadopoulos et al.
(2012). Community detection algorithms attempt to identify groups of vertices more densely
connected to one another than to the rest of the network. Social networks extracted from so-
cial media however present unique challenges due to their size and high clustering coefficients
(Girvan and Newman, 2002). Furthermore, ties in online social networks like Twitter are widely
recognized as having high social dimension, in that users ties represent different types of relation-
ships (Boccaletti et al., 2006; Miller et al., 2011a; Wang et al., 2010). Often times simultaneous
membership is of interest and Zhang et al. (2007) presents a methodology using a similar features
to those presented in Chapter 3. Our interest however is to detect the core members of a specific
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online community and therefore are interested in a hard clustering where users are assigned to
one and only one group.

The Louvain Grouping algorithm presented in Blondel et al. (2008) is widely used for com-
munity optimization within the network science community. Louvain grouping uses a similar
objective function as the Newman-Girvan algorithm Newman and Girvan (2004), but is more
computationally efficient. In community optimization algorithms, the graph is partitioned into k
communities based on an optimization problem that centers around minimizing inter-community
connections where k is unspecified. Both Newman and Blondel find these communities by max-
imizing modularity. The modularity of a graph is defined in Equation C.1. In Equation C.1, the
variable Ai,j represents the weight of the edge between nodes i and j, ki =

∑
j Ai,j is the sum of

the weights of the edges attached to vertex i, ci is the community to which vertex i is assigned,
δ(u, v) is the inverse identity function, and m = 1

2

∑
i,j Ai,j .

Q =
1

2m

∑
i,j

= [Ai,j −
kikj
2m

]δ(ci, cj), (4.1)

Louvain grouping maximizes modularity (Eq. C.1 ) by first sequentially calculating the mod-
ularity gain associated with adding vertex i to its nearest neighbor j’s community, and always
selects the individual assignment which provides the greatest gain. In its second step communi-
ties are replaced by super-vertices, and two super-vertices are connected if there is at least an edge
between vertices of the corresponding communities. These steps are repeated recursively until
modularity no longer increases. In our ensemble we will develop pairs of community assign-
ments for each user by running this algorithm on the reciprocal mention and reciprocal following
networks. However, Blondel et al. had not been extended to heterogeneous graphs, and clusters
based only on co-mention or co-friendship ties return clusters that fail to isolate OEC members
sufficiently Tang and Liu (2011).

One alternative is to develop graph representations that account for a greater number of the
user behaviors used for group organization within OSNs. Mucha et al. (2010) present a method
to detect communities in time-dependent multiplex networks by extending community quality
functions, like Equation C.1, to account for null models within each graph representation within
the heterogeneous graph. Alternatively, Sun et al. (2010) presents an iterative approach that finds
similarity-based separations based on multimode graphs. However, the scale associated with
OEC-related searches make these methods intractable. The results presented in Chapter 3 imply
that a multiplex and multi-node or heterogeneous graph representation could help overcome
problems with high social dimension.

Another area of research which could prove useful to our task is that of dense subgraph de-
tection. Some have argued that highly active sets of core users account for the proliferation of
content within online communities (Pei et al., 2014). At the node level these users can be iden-
tified using a k-core based approach, where users’ centrality is measured by their membership
in the most dense k-cores across social media platforms. We propose that unsupervised methods
able to find highly connected sets of users could define “discussion cores” within online com-
munities, and dense subgraph detection would be an appropriate framework. Dense subgraph
detection can be preferable when a complete clustering of the data is not desired. Instead the
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researcher is merely interested in highly connected communities which may represent a com-
munities most active members. Chen and Saad (2012) present a scalable hierarchical clustering
technique community detection technique which returns only clusters which meet an a priori
density threshold. Although the method scales well and returns useful results, it has not been
extended to a heterogeneous graph representation.

Ideally, the feature space presented in Chapter 3, ΦIV CC , could be clustered in a manner
where sets of positive case instances could be easily identified. To estimate the performance
of an unsupervised clustering of ΦIV CC we first assume positive case training instances as well
as accounts predicted as ISIS supporting and subsequently suspended as ground truth. This
assumption will be discussed in greater detail in Section 4.4. Using kmeans, as is common
in spectral clustering, with k = 100 yields clusters with precision no greater than 67%. Such
results could not be effectively used as positive training instances. The ROC curve associated
with ΦIV CC is depicted in green in Figure 4.3. Due to the goal of quickly building positive
case training instances only clusters of size greater than 100 are inspected. A similar curve for
Louvain Grouping of the undirected mention network is depicted in red. The plot illustrates
the limitations of each method with respect to “discussion core” detection and motivates the
remainder of this chapter.

4.3 Methods
Each method we present is used on similarly collected datasets. In each case we collect users’
activity using snowball sampling Goodman (1961), a non-random sampling technique where a
set of individuals is chosen as “seed agents”, and the k most frequent accounts followed by each
seed agent are taken as members of the sample. Although this technique is not random and prone
to bias, it is often used when trying to sample hidden populations and provides social structure
that hash tag or geographically fences searches do not. We seed searches with sets of users that
are known members of a larger OEC of interest. We then collect additional users’ activity based
on seed users’ social ties. In some cases we iterate this process in “hops.” These searches often
result in hundreds of thousands of users, many of whom will not be of interest. The subsequent
task is to efficiently find structures worthy of manual inspection.

Our task is to detect discussion cores of users who’s activist cause is easily identifiable. To do
so we will attempt to find groups who have organized using multiple edge types. We define our
heterogeneous graph as G = (V1, V2, .., Vn, E1, E2, .., Em). Where G is an undirected, weighted
graph with vertex classes V1...Vn. Each contains vertices vn,1..vn,j with one or more edge types
E1, E2, .., Em. We define a subset of targeted vertices At ⊆ Vt and denote its complement as Ãt.
Our goal is to use unsupervised methods to identify a subset of At with high precision in order
to subsequently train a classifier to partition the network.

4.3.1 Ensemble Agreement Clustering (EAC)
To detect these core communities we develop an ensemble of clustering techniques that leverage
users’ commonality across following ties, mention ties, and hash tag use. Like Mucha et al.
(2010) we are interested in modularity maximization across a multitude of graph representations.
However, instead of assigning all users to clusters, we are interested in sets of users that are co-
clustered across R different graph representations. Specifically we are looking for sets of users
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where clustering algorithms are in “agreement” across multiple edge types, thus returning a
subset or users we hope are more likely to be organized around an identifiable activist cause.

To present our method we introduce the following notation. Given a set of vertices V =
{V1, V2, ..., Vn}, we look to develop a cluster ensemble for vertex type V1. A cluster ensemble
is a set of clustering solutions, represented as C = {C1, C2, ..., CR} where R is the ensemble
size. Each solution within the set, CT , is simply a partition of V into kT disjoint clusters as
CT = {CT

1 , C
T
2 , ..., C

T
kT
} where T is defined by edge-type and clustering method. Each solution

could also be represented as a vector, ~cT , of length n where ~cT i ∈ 1, 2, .., kT . We can then define
our solution CS by assigning each vertex to the clusters defined by its vector of assignments
~cSi = c1i , c

2
i , ..., c

R
n . This leaves a strict subset of vertices that are co-clustered across allR routines

within the ensemble.
When applied to Twitter data we develop community assignments based on users’ mention

and friend ties using the Louvain Grouping algorithm (Blondel et al., 2008), as it is commonly
used for community detection in large graphs (Fortunato, 2010; Traud et al., 2012). We also
develop community assignments for each users’ hash tag behaviors using bipartite graph parti-
tioning (Dhillon, 2001b) which is presented in greater detail in Chapter 5. We set the parameter
k for the number of distinct user/hashtag co-clusters based on the characteristics of the cluster
results of the co-mention and co-following graphs. We count the number of clusters greater than
size m in both cases and take the maximum. Given the results of all three clustering methods,
we extract these core communities where sets of users are co-clustered across all 3 graphs.

4.3.2 Heterogeneous Dense Subgraph Detection (HDSD)
Since discussion cores are often characterized by high levels of activity among a smaller number
of users and sometimes detected as k-cores (Bessi and Ferrara, 2016), dense subgraph detec-
tion is an intuitive approach for OEC discussion core detection. Chen and Saad (2012) present
dense subgraph detection as a community detection method, and we will extend there work to a
heterogeneous graph.

Chen and Saad (2012) explain their approach as follows. Given a sparse undirected graph G
and a density threshold dmin, they construct G′ with weighted adjacency matrix A and construct
an adjacency matrix M :

M(i, j) =
〈A(:, i), A(:, j)〉
||A(:, i)||||A(:, j)||

(4.2)

They then construct an array C of the tuples (i, j,M(i, j)), for all nonzero edges M(i, j)
where i > j, sorted in ascending order with respect to M(i, j). They then incrementally delete
edges in G′ based the tuple order in M and calculate density of the induced components of G′.
The authors are able to show increased speed and algorithmic equivalence however by construct-
ing hierarchy T according to the sorted vertex pairs of C. They subsequently calculate density
by traversing T from the top down and calculating the density of sub-graph G′ consisting of all
child nodes v ∈ V of a parent node p ∈ T . When one of the subgraphs G′ meets threshold dmin

it is returned.
We use an approach almost identical to Chen and Saad (2012) except that we define M as

a weighted combination of similarity graphs within G. Therefore for each of our R edge types
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associated with V1 we define MR in the same manner as Equation 4.2 but with the corresponding
adjacency matrix AR.

MR(i, j) =
〈AR(:, i), AR(:, j)〉
||AR(:, i)||||AR(:, j)||

(4.3)

BecauseMR can become dense when applied to large sparse graphs, we retain only the largest
tr = 2× |Er| edges in each Mr. We then define a weight vector ~w of length R and construct our
heterogeneous similarity matrix MH in the following manner:

MH(i, j) =
√
w1M1(i, j)2 + w2M2(i, j)2 + ...+ wRMR(i, j)2 (4.4)

and construct C by sorting the t largest tH = max(t1, t2, ..., tR) edge tuples of MH in de-
scending order. T is then build as a binary tree based on the ordered tuples ofC. Unlike Chen and
Saad (2012), we search T and set our minimum density threshold using weighted combination
of subgraph densities. Again we use our weight vector, ~w. In each of our undirected, symmetric
user graphs we calculate density as follows:

dR =
|ER|

VR(VR − 1)/2
(4.5)

In the case of bimodal or bipartite graphs we simply binerize the similarity graph and calcu-
late density as depicted in Equation 4.5. We finally define heterogeneous density as:

dH(i, j) = w1d1 + w2d2 + ...+ wRdR (4.6)

We then remove parent vertices from the top of the hierarchy T until G′ meets our density
threshold or breaks into components. If those components meet our density threshold, they are
returned as search results. If they do not, they are added to a queue, and the algorithm is repeated.
Our approach is summarized in Algorithm 2. For a detailed discussion of the performance and
scalability of this algorithm we refer readers to Chen and Saad (2012) as our extension with
respect to heterogeneous graphs does not significantly alter computational complexity.

When specifically applied to Twitter data we define undirected unimodal graphs of users’
co-mention, Gm , and co-following, Gf , ties. We also define Gh a bipartite graph of users and
hash tags where each edge corresponds to the number of times a user i posted with hash tag
j. We also select dmin based on values of dM associated with Louvain Groups Blondel et al.
(2008) associated with Gm and Gf . We will discuss parameter selection and sensitivity further
in Section 6.5.

4.4 Evaluation
As is often when evaluating performance of community detection algorithms on real world
graphs, in our case ground truth in unknown. However, we are not interested in estimating the
performance of EAC and HDSD across all graph topologies; we simply want to evaluate these
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Algorithm 1: Detecting dense cores in a heterogeneous graph
Input : Given a large sparse, weighted, undirected heterogeneous graph G with R distinct edge

types corresponding to node class V1 and density threshold dmin

1 Compute Matrix M as defined in 4.4.
2 Sort the largest t non-zero entries of M in ascending order, where t = nz(A). Denote C the sorted

array.
3 Construct the hierarchy T according to the sorted vertex pairs designated by C.
4 Extract Subgraphs of G where dM ≥ dmin as defined in 4.6 using the same algorithmic approach

defined in Chen and Saad (2012).

methods’ ability to find activist and extremist communities embedded in large snowball samples
within Twitter. We are interested as to wether these methods generalize across multiple types of
groups within this specific type of search within this specific OSN.

Evaluating community detection has typically been done using either synthetic graphs as
in Chen and Saad (2012) or inferring ground truth from metadata (Berger and Morgan, 2015b;
Zachary, 1977). Both methods’ shortcomings have been well documented. Synthetic graphs
often fail to reproduce complex structures in real world graphs because the graph generating pro-
cess is often not fully understood (Peel et al., 2016). Our heteregeneous graphs are clearly the
result of a highly complex generation process as observed by their complex structures (Girvan
and Newman, 2002) and not adequately modelled by existing synthetic graph models. Inferring
ground truth from metadata can confound results as well. If the metadata is irrelevant to the
structure of the network, or algorithms and metadata ”capture different aspects of the networks
structure” results can be highly misleading (Peel et al., 2016). We will use partially synthetic
graphs to highlight the complexity of our graphs, and subsequently approach evaluation by lever-
aging unique metadata available in the ISIS NOV14 Twitter dataset. We will subsequently use
feedback from intelligence experts to validate EAC results in Section 4.5.

In our case even partially synthetic graphs alter graph structure too much to evaluate perfor-
mance. Modularity-Based Stochastic Block Modeling as a means to partially alter existing real
world graphs while maintaing more conplex structure than more naive methods. For a detailed
explanation of this method is provided in Appendix C. The method uses Louvain grouping (Blon-
del et al., 2008) to identify a block model, and adds, removes, or permutes an apriori percentage
of edges in off-diagonal blocks and blocks that meet a maximum size threshold. Large blocks
along the diagonal are returned, and the algorithm is executed resursively.

To create partially synthetic graphs with known ground truth, the 31,327 users returned from
the ISIS NOV14 dataset by either EAC or HDSD are assumed to be members of a community of
interest and thus ground truth. We create three partially synthetic datasets by increasing the edge
count within the community of interest by ξ = {.05, .10, .25} percent in each using Modularity-
Based Stochastic Block Modeling. We augment the bipartite user and hashtag graph by randomly
adding user-hashtag ties from within the community of interest. Finally, we reduce variability by
binerizing each of the graphs since we do not have a responsible means to select edge weights.
Figure 4.1 illustrates the change in graph structure imposed by this method. The x-axis depicts
the percentage of edges added to the community, ξ, and the y-axis depicts recall. The figure
illustrates how adding signal infact reduces recall in both algorithms. However, comparison of
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Figure 4.1: Depicts recall when augmentation of community is imposed on Θ∪ at varying percentages
using Modularity-Based Recursive Stochastic Block Modeling as described in Appendix C.
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EAC and HDSD highlights interesting differences between the algorithms. EAC recall increases
from ξ = (.05, .25) while HDSD recall continues to decrease. It is possible that the way we have
parameterized HDSD, results are focused on finding smaller dense subgraphs and the algorithm
is unable to identify increased modularity at in large scale communities, and though we have not
conducted an study with respect to parametric sensitivity results in Section ?? are consistent with
this hypothesis.

To responsibly infer ground truth from metadata, the metadata must be relevant to the clus-
tering task and not capture different aspects of network structure. The ISIS NOV14 provides a
unique opportunity to validate both requirements. In November of 2014 we seeded a two-hop
snowball sample of influential ISIS propagandists’ Carter et al. (2014) following ties in hopes
of detecting the ISIS-supporting community on Twitter. The search resulted in 118,879 user
account profiles and roughly 186 million tweets. As discussed in Chapter 3, we were able to
responsibly infer ISIS sympathizers based on a heuristic which included manual validation, soft
clustering, and Twitter suspension rates. This heuristic enabled us to identify 5,126 positive case
instances of ISIS sympathizers and subsequently predict over 18,000 additional sypathizers at
high accuracy. As of March 21, 2017 over 18,000 accounts, 7,823 of which had been predicted
as ISIS-supporting, had been suspended by Twitter. These numbers are not surprising given
Twitter’s aggressive campaign which had suspended over 360,000 accounts for supporting vi-
olent extremism as of August of 2016 (Benner, 2016). We argue this metadata is relevant and
captures at least some of the network structure we are interested in as many of these suspen-
sions were likely a result of user participation in online extremist communities. However, we
also acknowledge that Twitter suspends accounts for spam as well as abusive behaviors twi. To
account for this we develop two ground truth datasets. The first, ΘS refers to all users within the
ISIS NOV14 dataset that have subsequently been suspended. We recognize that ΘS likely con-
tains some users who were suspended for other reasons, and therefore construct Θ∩ consisting
of accounts both suspended and predicted as ISIS-sympathizers in Chapter 3.

Figure 4.2 highlights suspension rates within the ISIS NOV14 data set as well as the sus-
pension rates associated with each clustering routine’s results. The plot depicts a venn diagram
illustrating the relative size of the dataset (118,648 users), the accounts returned by EAC (22,086
users , 123 groups), the accounts returned by HDSD (17,542 users, 26 groups), and the intersec-
tion of the two algorithms (8,301 users). Twitter suspension rates associated with each subset
are depicted with ΦR. As can be seen, accounts returned by EAC have suspension rates of 28%,
nearly 9% higher than the results returned by HDSD, and we have found that many of the groups
returned by HEAC have suspension rates exceeding 90%.

Specific clusters with high rates of positive case instances could be used to rapibly build
training sets. Figure 4.3 depicts curves similar to receiver operator curves (ROC) of EAC (black),
HDSD (blue), Louvain Grouping of the undirected mention graph (red), and a kmeans cluster-
ing of ΦIV CC (green) applied to the ISIS NOV14 dataset with two different ground truth data
sets. The left panel depicts the 12,415 accounts predicted as ISIS Supporting in Chapter 3 and
suspended by Twitter as of March 21, 2017. We will refer to this set of positive cases as Θ∩.
The right panel assumes the 29,674 accounts that were either suspended by Twitter or predicted
as ISIS supporting to be positive cases. We will refer to this set of positive cases as Θ∪. We
are interested in finding discussion cores or groups with consisting of high percentages of OEC
members. These curves are different from ROC curves in that we inspect only clusters with 100
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Figure 4.2: Depicts EAC and HDSD results when performed on the ISIS NOV14 Twitter search. Both
size in terms of number of users and Twitter suspension rate as of March 21, 2017 are depicted. The plot
highlights EAC’s ability to rediscover suspended accounts at higher rates than HDSD.
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Figure 4.3: depicts performance curves of various unsupervised methods for OEC discussion core detec-
tion using two different assumptions of ground truth. The left panel assumes the 18,6302 accounts within
the ISIS NOV14 dataset that have been suspended or deleted as ground truth, and right panel depicts the
12,415 accounts predicted as ISIS Supporting in Chapter 3 and suspended by Twitter as of March 21,
2017 as ground truth. Results of kmeans clustering with k = 100 of the IVCC feature space presented in
Chapter 3 are depicted in green, EAC in black, HDSD in blue, Chen and Saad’s dense subgraph detection
of the undirected mention graph in cyan, and Louvain groups in red. With each algorithm, only clusters
with greater than 100 users are returned. The plot highlights both the limitations of existing methods like
Louvain grouping and the use of IVCC as an unsupervised approach and the superior performance of
EAC.

or more users in an attempt to evaluate these algorithms ability to enable analysts to efficiently
build training sets through manual inspection. If a high enough percentage of users associated
with a given cluster meet the definition of an OEC member the entire cluster could be used as
positive training instances. As can be seen EAC clearly outperforms all other methods at this
task. EAC returns 123 large clusters. The Θ∩ set of assumed positive case instances yield X
clusters where over 90% of the users belong to the ground truth user set resulting in 1794 pos-
itive case instances for training. Furthermore, 13,544 negative case training instances could be
identified at over 95% precision. The Θ∪ set of assumed positive case instances yields 19 clus-
ters with over 90% precision resulting in 4850 positive case instances. None of the alternative
algorithms provide return any groups with greater than 90% precision in either dataset. The
closest alternative would be Louvain Grouping 4823 instances at 73% precision using the Θ∩
set as ground truth. For the purpose of identifying discussion cores, EAC performance appears
superior.

It is possible that these estimates of performance are confounded by biases in Twitter’s sus-
pension campaign. Furthermore, Twitter does not provide us with a reason for their decision to
suspend specific accounts. If in fact Twitter suspended these accounts for because of spam dis-
tribution, we would not expect to see the rich community structure our algorithms are designed
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Syrian Revolution Twitter Community (SRTC)
Date Seed Accounts Search Return + Cases Detected OEC
NOV15 16,538 91,256 3,572 8,126
MAR16 3,295 87,724 2,529 9,086
DEC16 4,258 118,879 4,567 NA

Euromaidan Twitter Community (ETC)
Date Seed Accounts Search Return + Cases Detected OEC
AUG15 8 92,295 1,221 4,307
MAR17 1,175 92,076 4107 NA

Table 4.1: Describes historical performance of EAC, and multiplex vertex classification for two updates
the Syrian Revolution Twitter Community (top panel) and the Euromaidan Twitter Community (bottom
panel).

to detect. Moreover, these results are consistent with qualitative analysis provided by trained
intelligence analysts in Section 4.5. Although HDSD failed to precisely detect discussion cores,
we observe some unique qualities with respect to returned clusters which will be discussed in in
detail in Section 4.5.

4.5 Case Studies
In this section we will present case studies of dynamic communities organized around common
activist causes. The first case study involves Twitter users in the Middle East who actively share
content associated with the Syrian Revolution. The second case study focuses on the ongoing
Euromaidan movement in Ukraine. In both cases nearly all users meet the definition of on-
line activism, with some meeting our definition of online extremism. Our case studies will be
largely consistent with the results presented in Section 4.4 and confirm EAC as the more effec-
tive methodology for building positive case training instances of an OEC of interest. In both
cases we incorporate feedback from intelligence analysts with regional expertise and language
proficiency.

Both case studies the communities have been periodically updated multiple times over the
past two years. With each update, we execute a 1 hop snowball sample of OEC members’ men-
tion or following ties and use EAC to identify OEC discussion cores through manual inspection.
In each case we define the user behaviors of an OEC member and manually inspect randomly
sampled users from clusters. Clusters with estimated positive case instance rates over 90% we
claim to be useful for follow on supervised OEC detection with multiplex vertex classification.
Within each case study we will describe the OEC of interest and the dynamics of the community
over time. We have not studies HDSD until recently, and therefore will only compare HDSD and
EAC using the most recent update of each case study.

Syrian Revolution Twitter Community
The Syrian Revolution Twitter Community is a periodically updated set of Twitter users based
originally on the ISIS-supporting OEC presented Chapter 3. We define a member as a Twit-
ter user who positively affirms the leadership, ideology, fighters, or call to Jihad of any of the
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SRTC DEC16 search data and results
Method Large Clusters Users Positive Case Instances
HDSD 12 5,994 NA
EAC 17 15,614 4,125
Louvain 18 80,038 None

Table 4.2: Describes HDSD and EAC results applied to the SRTC DEC16 search data. For purpose of
comparison between Louvain clusters and EAC and limited access to regional expertise within the US
department of defense only clusters with more than 500 users were inspected. Because HDSD clusters are
typically smaller, we inspect clusters larger than 100 users. Returned clusters were manually inspected
using random sampling.

known Jihadist groups engaged in ongoing operations in Northern Iraq and Syria, and activity of
members spans a continuum that ranges from online activism to extremism.

The community has been updated in November 2015, March 2016, and December 2016;
throughout each update, EAC enabled us to identify discussion cores with over 90% of users
meeting our criteria for OEC membership. The community was originally detected using a 1-hop
snowball sample of the 16,538 members of the ISIS-supporting OEC presented in Section 4.4.
The November 2015 SRTC Twitter search yielded 91,256 users. EAC output from the search
returned 62 groups consisting of 22,949 users. Manual inspection of clusters identified 6 clusters
where over 90% of sampled users met the criteria for OEC membership resulting in 3,572 pos-
itive case training instances which we subsequently used to detect the November 2015 instance
of the SRTC through multiplex vertex classification. We conducted similar updates in March and
December of 2016 with similar results. In each case EAC was effective for identification of OEC
discussion cores and useful for efficiently building large training sets. For detailed figures see
Table 4.1.

For the purpose of quantifying the utility of EAC, we gained access to intelligence analysts
with deployment experience in the Middle East from the Secretary of the Air Force, Adminis-
trative Assistants Staff. The December 2016 update SRTC search was collected based on 4,258
SRTC members from the March 2016 SRTC update. The December 2016 search yielded 118,879
users based on seed agents’ mention activity. We then ran EAC as well as Louvain grouping
Blondel et al. (2008) of the co-mention graph. Due to our limited access to analysts, we limited
Louvain and EAC clusters to those containing more than 500 users. The number of groups and
size of each cluster are provided in Table 4.2.

To measure levels of activism and extremism, as well as the uniformity and specificity of
clusters we provided a web survey. The survey randomly selected ten users from each of the 17
and 18 clusters returned by EAC and Louvain respectively. Analysts were blind to each clusters
algorithmic approach and size, and each analysts cluster order and randomly selected accounts
were unique. For each user, the analyst viewed the users last 15 tweets and labelled them as
exhibiting:

• No promotion (0):
• Online Awareness Promotion (1): online activity promoting awareness of an identifiable

cause, interest, or product McCaughey and Ayers (2013)
• Online Activism (2): online activity promoting awareness of an identifiable political

53



cause often advocating agreement with specific groups or outcomes McCaughey and Ayers
(2013)

• Online Extremism (3): online activism advocating support of groups or causes that in
any distribution of opinion would lie on one of the“tails” (Lake, 2002)

Once the analysts scored 10 randomly selected users within a given cluster, they provided an
assessment of the specificity and uniformity of the group. We define both terms as follows:
Uniformity: the extent to which users’ activist agendas appear uniform

• None (0): no visible uniformity of cause among group members
• Weak (1): 3-4 users display similar interests and intensity
• Moderate (2): 5-6 users display similar interests and intensity
• High (3): 7-10 users display similar interests and intensity

Specificity:
• None (0): no visible specificity of cause among group members
• Weak (1): regional or generally accepted within either Sunni or Shia Islam
• Moderate (2): Country level geospatial similarity or denominational specificity within

Sunni or Shia Islam
• High (3): City, Party, or Organizational Specificity

Analysts survey results were consistent with the results we observed in Section 4.4. Analysts
feedback implies EAC groups were more uniform with respect to activism and extremism; fur-
thermore, their feedback indicates that EAC clusters have higher specificity. The left panel of
Figure 4.4 depicts box plots of the within cluster standard deviation of user scores. As the fig-
ure depicts, EAC clusters appear to be more uniform than those provided by Louvain grouping
of the undirected mention network. Although quantifying statistical significance is challenging
due to the inability to assume independence between users or groups, the box plot is consistent
with our assertion of increased uniformity within EAC clusters. The right panel depicts mean
group specificity and uniformity scores depicted for EAC (black dots) and Louvain (red crosses)
clusters. The means for each cluster type are depicted with dotted lines. It also appears that
analysts found EAC groups to show higher specificity, which is consistent with our observations
throughout each update of the SRTC and Euromaidan datasets.

Only two clusters had mean specificity scores above 2.5 and discussed content related to
ongoing operations in Syria and Northern Iraq. Both clusters were returned from EAC and
resulted in a set of 4,125 users that could be used as positive case training instances to update
the SRTC. Although we did not have analyst support to evaluate HDSD groups, we randomly
sampled output and found 3 groups totaling 433 users adequate for positive case training instance
use. Again, analyst feedback is consistent with our results from Section 4.4 implying EACs
superior performance for training set development.

Based on observations within our case study, both algorithms provide useful results apart
from positive case training instances within our OEC of interest. Both algorithms return activist
or extremist clusters unique from our OEC of interest. For example, HDSD returned a few highly
specific clusters focused on Islamic Extremism in Libya as well as a highly uniform group in
Qatar. Groups supporting the Muslim Brotherhood in Egypt and ongoing operations in Yemen
were identified by analysts within EAC results. The November 2015 update search of the SRTC
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Figure 4.4: Summarizes Air Force analyst feedback concerning EAC and Louvain clustering results of the
SRTC DEC16 Twitter Search.

contained a large cluster of Scots blogging for independence from the United Kingdom. HDSD
also returns clusters that could be influenced by botnet activity. We observe one image sharing
community that could very well organized around a social botnet. We identify similar clusters in
the ETC case study as well.

Euromaidan Twitter Search (MAR17)
The Euromaidan movement started as a series of protests in November 2013, where large num-
bers began to call for the removal of then President Viktor Yanukovych. These protests reached
their peak in February 2015, ultimately leading to the removal of many of Ynukovych’s senior
officials, and were a precursor to Russia’s subsequent occupation of Crimea. Despite the instal-
lation of a new government, a substantial online activist community continues to oppose Russian
influence in the Ukraine and are often described as part of the Euromaidan Movement (Szostek).
We will refer to this community as the Euromaidan Twitter Community (ETC). Here, although
strong negative sentiment toward the current Ukrainian government is observed, the online ac-
tivism seen largely advocates change through legitimate government processes. Thus, while we
acknowledge that little “extremism” exists in this community, this community is of strategic in-
terest to organizations like the North American Treaty Organization (NATO) due to its relevance
to ongoing geopolitical events in the region. This community was extracted originally from a
two-hop snowball sample of 8 known Euromaidan movement members’ mention ties in March
2014. The search resulted in 92,295 Twitter accounts, and manual inspection of EAC output
yielded a community of 1,221 accounts actively supporting the movement. Using methods simi-
lar to those described in the last case study, we updated the ETC again in March of 2017 yielding
a set of 4,083 community members. Details with respect to searches and results are provided in
Table 4.3.

To identify community members we again manually inspected EAC and HDSD results and
observe similar algorithmic performance. Manual inspection of 4 of the 6 largest EAC clusters
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Euromaidan MAR17 search data and results
Method Large Clusters Users Positive Case Instances
HDSD 27 10,552 1,192
EAC 15 8,287 3,285
∪HDSD,EAC 4,083
Louvain 21 66,695 None

Table 4.3: Describes HDSD and EAC results applied to the ETC MAR17 search data. For purpose
of comparison between Louvain clusters and EAC clusters with more than 300 users were inspected.
Because HDSD clusters are typically smaller, we inspect clusters larger than 100 users. Returned clusters
were manually inspected using random sampling.

yields 3,285 instances of ETC members. These clusters were subsequently validated by advisors
from the United States Army Asymmetric Warfare Group with extensive experience working
with the Ukrainian Army. HDSD yielded 1,192 community members, 792 of which had not
been identified in EAC results. Again EAC outperforms HDSD with respect to training set
development, but we also again observe useful and unique characteristics in HDSD clusters.

Again both algorithms return clusters that are not useful for developing training instances
within our OEC of interest, but useful for other tasks. Within the March 2017 ETC search data
large clusters of apparently American users blogging about the 2016 United States Presidential
Election can be observed. Similar right-leaning clusters appear to contain users in the United
Kingdom and Germany. HDSD again returned a handful of highly localized clusters. Several
groups contained users who’s profile descriptions had over 80% agreement at the city level with
groups located in Moscow, Ivanovo, and St. Petersburg. We also observed 2 clusters that appear
to be botnets. One botnet consisted of over 100 users who post URLs promoting law services in
Moscow; another appeared to consist of low level chatbots sharing pro-Russian content. Such
results could be quite useful for other tasks and will be discussed in Section 4.6.

4.6 Strengths and Limitations
In Sections 4.4 and 4.6 we have shown the utility of using dense heterogeneous subgraph meth-
ods to rapidly build training sets for OEC detection. As the results of our sampling technique
commonly return many users who are not of interest, a means to quickly remove users unlikely
to be of interest and return clusters whose promotional causes are highly similar is quite useful.
In the cases presented in this work, EAC appears to outperform HDSD, but other use cases or
could very well lead to different results.

We also find the identification of activist clusters unrelated to our OEC of interest to be
useful. The potential to identify competing discussion cores through these methods offers great
potential in gaining understanding of the dynamic war of ideas currently observed in online
social networks. It is possible that activism has a graph structure within online social networks
and methods like HDSD and EAC could be used to better understand how the development of
online extremism. The ability to efficiently identify related, competing discussion cores could
offer valuable insight for strategic messaging efforts as well. In fact we will discuss applicable
methods in Chapter 5.

Finally, the observation of possible botnets could also offer novel insight into tools used to
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Figure 4.5: Depicts OEC detection as a methodological pipeline. Data Collection is conducted using
snowball sampling then training sets are developed using unsupervised methods like HDSD and EAC.
Larger portions of the OEC can then be detected using supervised learning.

manipulate these dynamic communities. We have often observed sub-group structure in OECs
that could possibly be caused by social botnets. The structures promotional clusters observed in
HDSD results could very well be examples of automated means to promote specific brands of
activism as well. It is possible that cores exist within many of these online communities that are
social botnets designed to deceptively influence online opinion. This will be discussed in detail
in Chapter 6.

Although the results presented in this work are encouraging, they represent preliminary work
in this important application of community detection. In both cases our results are applied to
a very specific methodological pipeline. Our collection method of snowball sampling and our
Twitter case study data limit the generality of our results. It is possible that these methods could
be effective when applied to other heterogeneous networks within other applications. Further-
more, we have done very little to explore parametric sensitivity within both algorithms. It could
be useful to combine the strengths of both algorithmic approaches. It is possible that the hier-
archy T constructed in HDSD could be done using modularity as is done in Louvain grouping.
Such a method could offer more parametric flexibility than EAC, and provide better results than
HDSD.

The work presented in this chapter must be viewed in light of a larger methodological pipeline
as depicted in Figure 4.5. In essence, we are developing a active learning pipeline. Active
learning refers to a type of supervised learning where data is relatively cheap, but labels are
expensive. If the latent structure can be leveraged in the dataset, than instances can be selected
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for labeling that offer more discriminatory value for the classifier (Settles, 2010b). EAC and
HDSD offer the researcher an efficient means to identify informative positive case instances.
It is possible that dense clusters that are unrelated to the OEC of interest could provide highly
discriminatory information as well, and future work exploring this possibility could be quite
fruitful. Again, we recognize that the results presented herein represent preliminary work in this
important and emergent application of community detection.

4.7 Conclusion
In this chapter we have presented to methodologies to detect activist or extremist discussion cores
on Twitter. We extend methods used in dense subgraph detection to return only clusters where
users are similar in their following, mentioning, and hashtag patters. Both methods, ensemble
agreement clustering (EAC) and Heterogeneous Dense Subgraph Detection (HDSD), provide
useful results. However, we show that EAC provides superior performance when used to detect
discussion cores within online extremist communities on Twitter. Furthermore, we illustrate
with two case studies the ability to incorporate dense subgraph methods in an active learning
framework for OEC detection. Finally, propose other possible applications of both methods and
future research toward this important emerging application of community detection.
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Chapter 5: Mining Online Communities to
Inform Strategic Messaging: prac-
tical methods to identify community-
level insights

5.1 Introduction
Social media’s growing role in the shaping of public opinion has been observed in a variety of
political Loader and Mercea and geo-political Herrick; Juris settings. Although the true signif-
icance of social media’s role in actual political change resulting from this rise in use remains in
questionDewey et al. (2012); Howard and Parks (2012); Hussain and Howard (2013); Nanabhay
and Farmanfarmaian (2011), the emergence of social media as a means to at least motivate and
expose desire for change has been recognized by scholars. The Arab Spring Lotan et al. (2011);
Starbird and Palen (2012); Tufekci (2014); Wei et al.; Wolfsfeld et al. and the ongoing conflict
in Crimea Pablo Barbera; Szostek, have both highlighted the emergent role of social media, and
online social networks (OSN) more specifically, as facilitators of social activism.

Initially many viewed social media’s role in the Arab Spring and Euromaidan Movement as
positive examples of free speech; however, there also exists a downside to the ability of OSNs to
act as platforms of mobilization. More specifically, the rise of ISIS has been largely propagated
and highly publicized through OSNs Veilleux-Lepage (2014, 2015). Noting this, Western gov-
ernments have begun attempts to mitigate the impacts of ISIS’ propaganda approaches. However,
they have found it challenging to participate in and influence online communities which show
signs of extremism. In the United States, the recently-formed Global Engagement Center leads
the State Department’s effort to “coordinate, integrate, and synchronize government-wide com-
munications activities directed at foreign audiences in order to counter the messaging and dimin-
ish the influence of international terrorist organizations” Dozier (2016). Mr. Michael Lumpkin,
the group’s director, recently spoke to the need for new approaches:

“So we need to, candidly, stop tweeting at terrorists. I think we need to focus on
exposing the true nature of what Daesh is.”

Mr. Michael Lumpkin
NPR Interview March 3, 2016

A logical follow-up question to Mr. Lumpkin’s statement would be “Expose to whom, and
how?” We propose that quantitative analysis of large online extremist communities (OECs) could
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offer insight into the populations most susceptible to radicalization and could be used to inform
strategic messaging or assess ongoing diplomatic or military efforts. Although methods to detect
large online extremist communities have emerged in literature Benigni and Carley (2016); Be-
nigni, Matthew et al.; Johnson et al., the ability to summarize community content in meaningful
ways remains an open research question.

Online social networks now play in important role in helping people share information, par-
ticularly in times of unrest. As seen during the London riots of 2011 Glasgow and Fink as well
as post-earthquake information dissemination in Japan Sakaki et al., online communities often
organize around trending hash tags with short half lives. Political campaigns have shown similar
patterns Weber et al.. Furthermore, organization around these hash tags often coalesces over time
and is an important factor influencing information diffusion through social networks Chang. Url
sharing and the ability to mention other users have become common attributes of many online
social networks as well. In this paper we introduce three applications of existing methods to
mine relevant content from large, online communities by taking advantage of tokens like hash
tags, urls, and mentions. We discuss the following methods:
• Ideological User Clustering with Bipartite Spectral Graph Partitioning
• Narrative Mining with Hash Tag Co-occurrence Graph Clustering
• Identifying Radicalization with Directed url Sharing Networks
In each instance, we describe the data mining method in detail, present illustrative examples

from online communities that exhibit varying levels of extremism, and subsequently discuss
limitations and recommend future research. Our manuscript is organized as follows: we first
describe the online communities we will use in Section 6.3, we then introduce the aforementioned
methods in Sections 5.3, 5.4, and 5.5. Finally we summarize our findings in Section 5.6.

5.2 Data
As case studies we will present two online extremist communities , which are composed of one
or more OEC members. We define these terms as follows:

online extremist community (OEC): a social network of users who interact within social
media in support of causes or goals posing a threat to state stability or human rights.
OEC member: a Twitter user who’s timeline shows unambiguous support to the OEC
of interest. For example, if the user positively affirms the OEC’s leadership or ideology,
glorifies its fighters, or advocates its talking points.

It is important to note that a member’s support is relative and in many cases not in violation of
local law or Twitter’s terms of use. In fact, these “passive supporters” appear to be an essential to
the diffusion of online propaganda and therefore represent an important element of radicalization
efforts Veilleux-Lepage (2015). In each presented case study we instantiate an n-hop snowball
sampling strategy Goodman (1961) with known members of a desired community. We then
remove non-OEC members via supervised learning as presented in Benigni and Carley (2016);
Benigni, Matthew et al.. For this work we present two detected communities as described below.

Case Study 1: The Euromaidan Twitter Community
The Euromaidan movement started as a series of protests in November 2013, where large num-
bers began to call for the removal of then President Viktor Yanukovych. These protests reached
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their peak in February 2015, ultimately leading to the removal of many of Ynukovych’s senior
officials. These events were soon followed by the Russian occupation of Crimea, and despite the
installation of a new government, a substantial online activist community continues to oppose
Russian influence in the Ukraine. We will refer to this community as the Euromaidan Twit-
ter Community (ETC). Here, although strong negative sentiment toward the current Ukrainian
government is observed, the online activism seen largely advocates change through legitimate
government processes. Thus, while we acknowledge that little “extremism” exists in this com-
munity, we choose to examine this community due to its relevance to ongoing geopolitical events
in the region. This community was extracted from a two step snowball sample of 8 known Eu-
romaidan movement members’ mention ties from March 2014 to September 2015. The search
resulted in 92,295 Twitter accounts, and subsequent OEC detection returned 1,221 accounts ac-
tively supporting the movement. We have two collections from this community, one in March,
2016 and one in October, 2016.

Case Study 2: The Syrian Revolution Twitter Community
The Syrian Revolution Twitter Community is an updated set of users based on the ISIS-supporting
OEC presented by Benigni et al.Benigni, Matthew et al.. By using mention activity of non-
suspended, previously detected users and active learning, we update the SRTC based on the
recent community activity. The instance presented in this work was collected in March of 2016
and contains 8718 members. We define a member as a Twitter user who positively affirms the
leadership, ideology, fighters, or call to Jihad of any of the known Jihadist groups engaged in
ongoing operations in Northern Iraq and Syria. The majority of tweeters voice support for ISIS
or Jabhat al-Nusra though nearly all other anti-Assad factions are present.

Both the ETC and SRTC present a large community of Twitter users who’s collective activity
is of interest. In each case, group substructure, current interests, and information operations are
all of interest, yet methods for mining such information remain immature.

5.3 Ideological User Clustering with Bipartite Spectral Graph
Partitioning

Algorithms designed to find clusters of highly connected users within real world social networks
is often referred to as community detection and has been studied extensively Fortunato (2010). In
fact, Papadopoulos et. al. address the topic specifically with respect to social media Papadopou-
los et al. (2012). Though many relevant methods exist to identify highly connected sets of users,
it has been shown that users’ simultaneous membership in multiple social groups often makes
community detection methods based exclusively on social ties imprecise Benigni, Matthew et al.;
Tang et al. (2009). We and others DeMasi et al. (2016) have found that identifying user clus-
ters based on shared beliefs can be a useful alternative to traditional methods when searching
for ideologically homogeneous user groups. Within detected OECs, hash tag use often provides
user clusters consistent with ideological substructure within the community. One could view our
method as a means to efficiently find community structure based on hash-tag-inferred social ties.
For example, within a large Sunni extremist community like the SRTC, one can identify dis-
tinct clusters of support for Jabhat Al-Nusra, the Free Syrian Army, and many other competing
groups. Distinct regional interests are observed as well. We have found distinct news sharing
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communities focused on operations in Syria, Northern Iraq, Yemen and Palestine. To identify
these user groups we apply bipartite spectral graph partitioning to co-cluster Twitter users and
hash tags. Although we have applied these methods exclusively to investigate large online ex-
tremist communities, it is possible they could be used for other online settings such as targeted
advertising.

Often in network science bipartite graphs can be transformed into a one mode projection by
multiplying the bipartite adjacency matrix by its transpose Zweig and Kaufmann (2011). How-
ever, in the case of online social networks and bipartite graphs of users and hash tags specifically,
we have found these projections often become dense. In the case of users and hashtags, sets of
approximately 100 thousand users often generate millions of unique hashtags. A one mode pro-
jection can result in a large, dense adjacency matrix which proves costly with respect to memory.
For example we trimmed the user by hash tag bipartite graph extracted from the Euromaidan
Twitter Community search and retained only hash tags used by five or more unique users. The
resultant graph consisted of 92,295 users, 352,120 unique hash tags, and just over 16 million
edges requiring 219 Mb of memory in sparse matrix format. The one mode projection requires
over 60G of memory. We often find this type of increase in terms of edges with this type of ma-
trix making one mode projections somewhat inconvenient. Furthermore a great number of these
edges are quite close to zero and of little value to our task of clustering users. On option would
be to simply retain the n largets edges, however ”duality” between users and hash tags exists.
Hash tags are used to expose content to specific groups, and groups generate their own hash tags.
Dhillon et al. present bipartite spectral graph partitioning as a means to co-cluster words and
documents Dhillon (2001a) and argue the method obtains more interpretable clusters than one
mode projections because of the “duality of word and document clustering”. In other words, they
assert that word clustering induces document clustering and document clustering induces word
clustering. We assert the same duality holds true for users and hash tags. To co-cluster words and
documents, the authors generate a word-document matrix, and use left and right singular vectors
to project words and documents into the same euclidian space. They subsequently use k-means
MacQueen to find relevant clusters of documents and words. In our case, we claim duality in
user and hash tag clustering. Such a method is notably similar to the most recent advancements
in word embedding approaches, which focus on matrix decomposition of term matrices rather
than focusing on developing neural models for embedding Hamilton et al. (2016); Pennington
et al. (2014). In our model, communities influence hash tag popularity, and hash tag popularity
helps organize user communities.

5.3.1 Bipartite Spectral Multi-Partitioning
To explain Dhillon’s Bipartite Spectral Multi-Partitioning algorithm we introduce the following
notation. Lower case letters will represent column vectors. Capitol letters will denote adjacency
matrices. We construct the graph Am×n where an edge (or matrix cell) ei,j represents the number
of times user i tweeted hash tag j where i ∈ 1, 2, ...,m and j ∈ 1, 2, ..., n. We can represent this
bipartite graph as a square undirected graph as follows:

M =

[
0 A
AT 0

]
(5.1)
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The authors begin by explaining a spectral bipartition algorithm based on their proof illus-
trating the second eigenvector of the generalized eigenvalue problem Lz = λDz provides a
relaxation to the minimum normalized cut problem. Where L is the graph Laplacian defined as
the nxn symmetric matrix, with one row and column for each vertex, such that:

Li,j =


∑

k Eik, i = j
−Eij, i 6= j and there is an edge {i, j}
0, otherwise

(5.2)

Furthermore, L = D −M where D is the diagonal ”degree” matrix of adjacency matrix M .
This allows us to express L as follows:

L =

[
D1 A
AT D2

]
(5.3)

We can then express the second eigen vector z2 of L in terms of the second eigen vectors u2
and v2of the left and right matrices of the singular vector decomposition of A as follows:

z2 =

[
D

1/2
1 u2

D
1/2
2 v2

]
(5.4)

One can then approximate the optimal bipartition by assigning the elements of z2 to bimodal
values mj (j = 1, 2) based on the following minimization:

2∑
j=1

∑
z2(i)∈mj

(z2(i)−mj)
2 (5.5)

Which corresponds to the same objective function minimized by the k-means algorithm
Lloyd (1982). The authors then present the following bipartitioning algorithm:

Bipartite Spectral Bipartitioning

1. Given A form An = D
1/2
1 AD

1/2
2

2. Compute the second singular vectors of An, u2 and v2 and form the vector z2 as in (4).
3. Run the k-means algorithm on the z2 to obtain the bipartitioning.
The authors then generalize this to the multipartitioning case by using the l =

⌈
log(k)

⌉
sigular vectors of of An, u2, ..., ul+1 and v2, ..., vl+1 to obtain a k−wise partition. To do so, they
form the matrix:

Z =

[
D

1/2
1 U

D
1/2
2 V

]
(5.6)

Where U = [u2, u3, ..., ul] and V = [v2, v3, ..., vl]. The k − wise partition can be minimized
by the following equation:

2∑
j=1

∑
z2(i)∈mj

||Z(i)−mj||2 (5.7)
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Figure 5.1: depicts the size of user groups, sorted from largest to smallest, from the SRTC data with
k = 25 and k = 50 in the left and right panels respectively. The left highlights the algorithm’s tendency
to partition small sub-groups leaving one or two relatively large groups when k is not sufficiently large.
The right panel corresponds to a selection of k = 50 which in this case provides interesting sub-structure.

Like equation (5), equation (7) can be minimized by classical k-means. The algorithm can
be described as follows:

Bipartite Spectral Multi-partitioning

1. Given A form An = D
1/2
1 AD

1/2
2

2. Compute the l =
⌈
log(k)

⌉
singular vectors of An, u2, ..., ul+1 and v2, ..., vl+1 and concate-

nate them row wise to form Z.
3. Run the k-means algorithm on the l − dimensional data Z to obtain the desired k-way

multipartitioning.

5.3.2 Ideological User Clustering
We find that clustering the bipartite graph H of users and hash tags where an edge ei,j is defined
as the number of times user i posts hashtag j within our corpus of tweets. To do so we cluster
based on algorithm [REFERENCE].

To illustrate the utility of bipartite spectral partitioning we co-cluster users and hash tags
within the SRTC. Due to the prevalence social bots within this community Benigni, Matthew
et al.; Berger and Morgan (2015a), we set a threshold with respect to the minimum number of
unique users who posted a specific hash tag. This enables us to remove hash tags with high
frequency that are not necessarily indicative of a sub-group’s interests. In this case we set the
minimum unique user threshold γu = 5 roughly reducing the number of unique hash tags ob-
served within the community by 80 %. We then co-cluster the 8718 users and 39,137 hashtags
using k-means. In this case we choose k = 50 sub-groups, but acknowledge that selecting k
requires some trial and error by the user. If k is too small, the algorithm returns few large groups;
however, when k becomes ‘large enough’ more interesting sub-groups of users can be found.
Figure 5.1 depicts the size of user groups, sorted from largest to smallest, from the SRTC data
with k = 25 and k = 50 in the left and right panels respectively. The plot highlights the method’s
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Figure 5.2: depicts the 30 most frequent hash tags co-clustered with two sub-groups within the SRTC. In
each panel the hash tags are translated using Google Translate. Color depicts the relative frequency of the
hash tag within the subgroup when compared to the rest of the community. Darker font connotes higher
relative frequency within the subgroup when compared to the entire community.

propensity to first partition small groups of hash tags and users and highlights how nearly 75%
of the users in our dataset are clustered into one of two groups when k = 25. Only when k is
sufficiently large do we observe interesting clusters. In the case of the SRTC we start to identify
clusters talking about distinct conflict zones in the middle east. For example we find distinct
clusters discussing ongoing conflict in Syria, Iraq, Egypt and Yemen.

The hash tags co-clustered with the two largest user groups depicted in the right panel of
Figure 5.1 are summarized in Figure 5.2. Co-cluster A (left panel) consists of 2173 users and
3573 hash tags, while co-cluster B (right panel) consists of 1640 users and 3910 hash tags. We
calculate hash tag uniqueness within the cluster by comparing the relative frequency of each
hashtag within the group to the hash tag’s frequency within the entire community. Hash tags
are colored by relative frequency in Figure 5.2 where darker font indicates higher within group
frequency. For example Army of Conquest ( translated from : ØªØ�Ù�Ù§Ø ´Ø Ù¬Ø ) has a
much higher relative frequency within co-cluster B. The term refers to Jaish al-Fatah, an alliance
of Islamist rebel faction active in Idlib and supported by Saudi Arabia and Turkey. The rela-
tive frequency and count of these terms within the sub-group indicate a common interest among
users with respect to ongoing operations in Idlib and Jaish al-Fateh’s role in them. Co-cluster
A appears focused on denouncing ISIS which is highlighted by the hash tags werejectisis and
Abu Kamal Under Fire. Abu Kamal is a Syrian town once held by ISIS that was highly targeted
by US Coalition air strikes in February of 2016 Wood. Identification of such sub-structure can
provide novel insight to inform strategic messaging or operational assessments. For example,
manual inspection of users’ Twitter timelines in co-cluster A highlighted an effective messaging
theme employed by Jabhat al-Nusra that highlights ISIS’ killing of Muslims. Mining these com-
munities for effective propaganda themes could be used to inform strategic messaging, and be
used to identify users with high social influence within specific topics of discussion.
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Figure 5.3: depicts the relationship between clusters generated with bipartite spectral partitioning and
Louvain grouping using the SRTC dataset. The black nodes on the left hand side of the plot depict
clusters derived by bipartite spectral partitioning, while the white nodes depicted on the right side of the
plot depict clusters derived by Louvain grouping. Node size depicts cluster size. Edges depict the number
of users shared between the two cluster types.

We highlight the distinct difference between bipartite spectral partitions and standard user
grouping algorithms like Louvain grouping Blondel et al. (2008). We do not claim that bipartite
spectral clustering produces better groups as ground truth in real world networks can rarely
be inferred Peel et al. (2016). However, Figure 5.3 highlights the difference between clusters
generated with bipartite spectral partitioning and Louvain grouping using the SRTC dataset.
The black nodes on the right hand side of the plot depict clusters derived by bipartite spectral
partitioning, while the white nodes depicted on the right side of the plot depict clusters derived
by Louvain grouping. Node size depicts cluster size. Edges depict the number of users shared
between the two cluster types. The figure highlights the differences between the two clustering
methods. In practice we observe clusters that appear more homogeneous with respect to user
content using bipartite spectral partitioning, but we acknowledge these observations are largely
qualitative. Using both methods as an ensemble to find users who mention one another and user
similar hash tags could prove interesting as well, though we will leave such questions for future
research.

Although bipartite spectral multi-partitioning of users and hash tags offers unique insight into
shared user activity, the method is not without limitations. The relative size of groups is highly
sensitive to the researcher’s selection of k, and an exploration of alternative clustering techniques
is worthy of research Steinbach et al.. Specifically, k-means implementations which incorporate
a priori knowledge could be useful to cluster more complex graph representations of large social
networks Wagstaff et al.. It is also likely that additional information in user timelines could be
used to cluster users. Keywords within tweets or urls for example could be incorporated for more
informed clusters. Finally, large sets of hash tags are difficult to interpret. Word clouds like the
ones depicted in Figure 5.2 do not necessarily imply sentiment. However, sentiment mining tech-
niques could be applied to provide greater understanding, and as those methods become more
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mature with respect to non-English text we foresee them being highly useful.

5.4 Narrative Mining with Hash Tag Co-occurrence Graph
Clustering

10-15 January 10-15 March 10-15 May
ukraine freesavchenko eurovision

russia ukraine ukraine
little russia rukiprochotmirotvortsa

freesavchenko savchenko jamala
russia savchenko freesavchenko

saveuatwi donetsk russia
ukraine little news
donetsk russia donetsk

ato news eurovision
ukraine syria crimea

Table 5.1: depicts the top 10 translated hash tags with respect to frequency in the Euromaidan Twitter
Community from 10-15 January, 10-15 March, and 10-15 May 2017. Hashtags that occur only once are
in bold. The table highlights the limitations of naive methods like frequencies to summarize community
discussion.

In this section we would like to extract trending narratives from online communities in or-
der to gain understanding of interests and topical connections. Again, we find this particularly
informative in large extremist communities, but acknowledge it could be useful in other large on-
line communities as well. Currently, many tools summarize social media content by using naive
methods like frequency. However, in online communities participating in political activism fre-
quency alone often leads to predictable results. Table 5.1 highlights the redundancy in trending
hashtags over different time periods within the Euromaidan Twitter Community. Of the top 10
translated hashtags with respect to frequency, only 10% occur uniquely and are highlighted in
bold font. We define a narrative as a subset of online discussion organized around an identifiable
event or set of events within an online community. We use hash tag co-occurrence in tweets
to identify clusters of terms which are often quite interpretable to an end user. To do so, we
construct a temporally-constrained hash tag co-occurrence graph and use community detection
to extract community narratives.

We are interested in characterizing community narratives within an arbitrarily selected time
period T , and thus start by identifying the set of hash tags which appear more frequently within
T . Twitter limits collection of a user’s timeline to their last 3200 tweets Twitter (2016), therefore
the number of active users on any given day can vary significantly. Many users’ accounts go
dormant as well. This forces us to normalize hash tag rates based on active users within our
dataset. To do so, we construct a vector ~ua of length T where element i of ~ua is the number
of active users within our dataset at time interval i. We define an active user collected tweets
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Figure 5.4: The amount of time spanned by a given user’s last 3200 tweets varies greatly resulting in a
non-uniform number of active user’s tweets captured within our dataset. To evaluate trends we need to
normalize by active users per day. The figure above depicts active users per day in the SRTC dataset.
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span time i. Figure 5.4 depicts ~ua for the ETC. We then normalize hashtag rates for a given time
interval T = [t1, t2] as follows

dT =

t2∑
i=t1

~ua

where dT is the number of active user days associated with time interval T . We define dg as
the total active user days within our sample where

dg =
∑

~ua

We then construct ~hT and ~hG. Both are vectors of length n, where n is the number of unique
hash tags collected within the community of users U . Each entry in ~hT and ~hG represents the
normalized counts of each hashtag j divided by the dT and dG respectively. ~λT , a vector of length
n, represents the change in rate of hash tag j when compared to the global rate and is defined as
follows:

~λT = ~hT � ~h−1G

We then define our set of trending hash tags h as those having λT > φ. In our case we set
φ = 2 or hash tags who’s rate was twice as high as their global rate. It is worth mentioning
that this parameter needs to be selected with careful consideration as T gets large. Furthermore,
we only select hashtags with γu or more unique users posting them to ensure we are capturing
community narratives and account for bots as discussed in Section 5.3.

We then construct the network HT where an edge is defined as the number of times hashtag
i and hashtag j co-occur within user tweets posted within time interval T . Finally we cluster
HT using the Louvain Grouping algorithm and extract the resultant clusters to identify narratives
Blondel et al. (2008). It is worth mentioning that any graph clustering approach suitable to large,
weighted, undirected graphs could be used for this step. For an extensive discussion of suitable
alternatives we refer researchers to Fortunato et al. Fortunato (2010).

Figures 6.7 and 5.6 depict HT for the Euromaidan Twitter Community from 10-15 May,
2016 and 9-16 October, 2016 respectively. In each plot the left panel depicts HT where nodes
are sized by ~hT and colored based on their membership to large Louvain clusters. The right panel
summarizes the top 25 terms with respect to λT within a specific cluster or narratives. Each word
is sized by ~hT , and colored by λT where gray font indicates values close to one and increased
rates are colored. The four narratives depicted in the right panel of Figure 6.7 center around
major news story lines in Eastern Europe in early May, 2016. Narrative one, in red, centers
around actions taken by the pro-Ukrainian hacker groups Falcons Flame and Trinity, who de-
faced the official websites of 9, Russian-backed militant groups involved in the Crimean Conflict
Shamanska (2016). Narrative two, in blue, centers around the Ukrainian government’s the ap-
pointment of Yuriy Lutsenko as Ukraine’s attorney general UNIAN (2016). To appoint Lutsenko
the government passed a special amendment removing the requirement for the country’s attorney
general possess a law degree, and was perceived as corruption within the ETC. Narratives two
and three discuss the annual Lennart Meri conference in Tallinn Jensen, and Susana Alimivna
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Figure 5.5: depicts community narrative extraction within the Euromaidan Twitter Community from 10-15
May, 2016.

Figure 5.6: depicts community narrative extraction within the Euromaidan Twitter Community from 9-15
October, 2016.
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Jamaladinova’s Eurovision 2016 victory Roxburgh, Gordon respectively. We have shared simi-
lar figures with members of the United States Army Asymmetric Warfare Group with extensive
operational advisory experience in Ukraine which they found helpful in interpreting community
interests over time. If we think of the identified narratives as components within HT , the off di-
agonal densities between narratives could prove interesting as well. For example the connection
between narratives associated with the 2016 United States Presidential Election and Russian ag-
gression can clearly be seen in Figure 5.6. Louvain Groups six and eight are densely connected to
ongoing narrative of Russian actions in Syria and Ukraine highlighted in Louvain groups 1 and 2.

We assert that clustering and visualizing hash tag co-occurrence matrices offer researchers
and analysts a quick means to distill community-level discussion in online social networks. The
ability to mine quickly evolving hash tags within these communities offers insight into the com-
plex interests driving activist discussion. Although these methods are limited to fixed time peri-
ods of interest, it is likely that they could be analyzed as dynamic networks and offer insights into
changing interests over time Carley (2006). Additionally, these methods could be extended to
account for urls and hash tags to quickly find the external sources most influential within specific
topic areas. Similar to the points made in Section 5.3, incorporation of sentiment analysis could
provide additional value as well.

5.5 Identifying Radicalization with Directed url Sharing Net-
works

The methods introduced in Sections 5.3 and 5.4 illustrate how large online communities can be
mined for high level understanding of community interests. In this section we provide an example
where we can mine communities for social media intelligence (SOCMINT). Detecting extremist
communities at scale enables information extractions that highlight tactics and techniques used
for the radicalization process. For example ISIS uses Twitter for broad, general recruiting and
typically transitions to more secure messaging platforms as they identify individuals worth per-
sonally targeting for radicalization Berger and Morgan (2015a); Berger, JM; Callimachi (2015).
This “direct messaging” is typically done on Twitter through the @mention, where usera can
ensure his content is included on userb’s timeline by including @userb in the body of his or her
tweet.

These hypothesized recruitment behavior patterns can be extracted and investigated by con-
structing graphs based on specific types of tweets. The Twitter REST API Twitter (2016) pro-
vides structure to easily extract tweets containing urls and @mentions, and with this subset of
content we form the following graphs:

P , a weighted, directed graph, where we define an edge ei,j as the number of tweets con-
taining a url where useri mentions userj .
Up, a weighted, bipartite graph, where we define an edge ei,j as the number of tweets
posted by useri containing urlj . We hypothesis that propagandists and recruiters would
be a subset of the users within Up.
Ru, a weighted, bipartite graph, where we define an edge ei,j as the number of tweets
posted containing urli and mentioning userj . We hypothesize that recruits would be a
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Figure 5.7: The left panel depicts directed URL sharing network P within the SRTC. Nodes are both
colored and sized by out degree. The middle panel depicts the top 25 shortened URLs posted in UP with
respect to frequency as does the right panel.

subset of the users within Ru.
A simple analysis of node centrality of users within P provides inference into possible roles.

Users who send many messages with @mentions and urls are potential propagandists or re-
cruiters and would have relatively high out-degree Wasserman and Faust (1994) within P . Natu-
rally, users with high in-degree would be potential recruiting targets. Identifying both role types
offers insight into more nuances analysis to recruiting techniques, materials, and could poten-
tially help identify the user behaviors used to identify potential recruits. Both UP and Ru can
be used to further infer user roles. For example, if the urls shared by a user in Up often con-
tain links to peer-to-peer messaging services like Telegram or WhatsApp, they would possibly
be recruiters. If they share inflammatory news sources and videos they could be propagandists.
Furthermore, the types of links received by users in RU could offer similar insight to identify
potential recruits.

Figure 5.7 depicts the the relationship between recruiters and their recruiting targets as well as
the sites they reference in the radicalization process. To develop the plot we extract the 184,225
tweets where SRTC members use the @mention to share URL content between May, 2015 and
May, 2016. The left panel depicts the directed mention network, where nodes are SRTC mem-
bers and edges depict the number of tweets posted by user a that contain both an url and mention
of user b. Both the color and size of nodes denote the number of messages sent. Thus, small
blue nodes would be likely recruiting targets, and large red nodes would likely be recruiters or
propagandists. The center panel summarizes the top 35 sites shared within messages of this type,
as does the bar plot in the right panel. For privacy reasons we have chosen not to publish iden-
tified recruiters in this forum, but we find dyads within P with relatively small follower counts
and edge weights between 20 and 100 to often identify user to user exchanges consistent with
targeted recruiting. These online dialogues often facilitate transition to more secure platforms
over time as well. Conveniently, as these recruiters move discussion to peer to peer messaging
platforms, they typically provide their user identification number. For example, this analysis
yielded over 200 unique telegram.me accounts of likely recruiters.
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The methods described above to identify recruitment and propaganda dissemination within
online communities unfortunately still require a significant amount of manual exploration in or-
der to confidently extract users of specific role types. Moreover, the example provided above
merely highlights the ability to develop useful network representations based on hypothesized
behaviors. Although these techniques still require a significant level of manual inspection, it is
likely that more detailed NLP analysis of users’ tweets could further inform automated detection
methods, and active learning would provide the technical framework needed to gain adequate
performance in an efficient manner Settles (2009). Furthermore, we hypothesize that similar
strategies could be used to identify other user types with identifiable communication patterns.

5.6 Conclusion
In this paper we have provided researchers and practitioners three novel applications of existing
methods in network science in order to facilitate improved data analysis of large communities in
online social networks. We introduced:
• ideologically clustering users by hashtag behavior with bipartite spectral graph partitioning
• narrative extraction through hash tag co-occurence graph clustering
• user role inference from directed url sharing networks

In each instance, we presented the method in detail and illustrated meaningful insights from two
activist online communities. We also offered useful extensions to these methods for future work.
As stated in Section 5.3, we cannot claim the performance of bipartite spectral partitioning is
better than that of other clustering algorithms. However, we do show that clustering users by hash
tag use provides a different perspective. We see great potential in developing ensemble methods
to cluster users across multiple dimensions such as following ties, mention ties, and shared hash
tag use. Hash tag co-clustering also has limitations. Selection of time interval greatly influences
the relative frequency of hash tags over time, and understanding the correct T to extract narratives
needs further research. It is likely that some temporal decay function on link weights could be
used or other methods from dynamic network analysis. Moreover, we highlight that the methods
presented in this work almost exclusively mine patterns based on graph structure. This affords
these methods to perform independent of the language use of community members, and it is
likely that they would complement NLP-based methods to mine intelligence from OECs. Our
hope is that this work enables both researchers and practitioners to draw novel insights from large
online communities.
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Chapter 6: The Spread of Fake Online Cred-
ibility:
Detecting Socialbot-Network-Promoted
Agendas and Users in Ukraine,
the Middle East, and the United
States

6.1 Introduction
Social influence occurs when a person’s emotions, opinions, or behaviors are affected by others
Kelman (1958), and the emergence of Online Social Networks (OSNs) as publication and news
delivery platforms Chu et al. (2010) has provided a powerful marketing venue accessible to any-
one. In fact, as of June, 2016, Facebook and Twitter claim to have nearly 2 Billion active users
combined Statista (2016a,b). These large OSNs have become powerful venues to shape emo-
tions, opinions, and behaviors, and it comes as no surprise that we now observed sophisticated
technical means used to manipulate them. A common tool used to manipulate perception within
OSNs is the automated social actor, or “bot” Ruths and Pfeffer (2014). Initially used to spread
malware Zhang et al. (2013), a substantial amount of literature now documents the use of bots
to influence geopolotics by creating artificial online personas and content creating an illusion of
grass-roots support to a political agenda Ratkiewicz et al. (a,b); Woolley (2016). Socialbots have
also been used to spread fake news and manipulate large scale financial disruptions. In April,
2013 hack of the Associated Press Twitter account that spread a fake news story of a terror attack
at the White House that resulted in a 147 point drop in the Dow Jones stock index Ferrara (2015).

As understanding of these promotion methods improves, an increasing number of studies
describe socialbots deployed as networks. Socialbot Networks (SbNs) have been used in political
revolutions like the Arab Spring Abokhodair et al. (2015), and by terrorist groups like the Islamic
State in Iraq and Syria (ISIS) Al-khateeb and Agarwal (2015); Berger and Morgan (2015a) and
Jabhat al-Nusra [citation removed for blind review]. SbNs have also been shown to be both
pervasive and highly active in online conversation within the 2016 United States Presidential
Election Bessi and Ferrara (2016). Unmitigated, SbNs have the ability to undermine the very
foundation of our information society.

In this paper we introduce two specific classes of SbN used for both promotion of users
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Figure 6.1: Depicts core bot behavior in the Firibinome Mention-core Socialbot Network.

and content, as well as influencing political opinion through propaganda dissemination. Our de-
tection method and analysis originates from the field of community detection which looks for
sub-groups of highly connected users within a social space. While studying large online com-
munities of political activism, we have begun to frequently observe two specific types of botnet
structure: Mention Community Socialbot Networks (MCSbNs) and Cyborg Socialbot Networks
(CSbNs); we know of no comprehensive study of either. MCSbNs are SbNs whose socialbots
construct large, mention networks designed to promote specific users, groups, or narratives. CS-
bNs have socialbot accounts consisting of real users who authorize socialbot access to post from
their accounts. These two classes of botnet are not mutually exclusive, and we will provide an
example of a botnet meeting the criteria for both.

Accounts within these SbNs exhibit anomalous mention behavior in that they post strings of
@mentions, as depicted in Figure 6.1. These posts often can be associated with the #FollowFri-
day movement in which users share lists of other users to recommend following ties; however,
we observe anomalously dense reciprocity in some cases forming subcommunities with clear
promotional objectives. Our increased observation MCSbNs and CSbNs for marketing or geopo-
litical influence motivates this work. Our goal is to provide an understanding of these emergent
structures in hopes of shaping future research into the manipulation of online opinion. We define
each class of SbN and illustrate how they attempt to promote users, influence online discussion,
and bridge seperate online communities by presenting several novel case studies from Twitter.
Additionally, we present a dense-subgraph-based MCSbN detection strategy that will likely aug-
ment many existing instance-based detection methods. Our case studies span online communities
focused on Middle Eastern Affairs, the Ukrainian Euromaidan Movement, and the 2016 United
States Presidential Election. The summary of our case studies is provided in Table 6.1. We also
discuss the the limitations of our findings and propose future research.

6.2 Related Work
Socialbots are Automated Social Actors (ASA), or software designed to replicate human activity
in an online social space Abokhodair et al. (2015). When social bots are deployed as a network
they are referred to as socialbot networks (SbN) or social botnets and have been used for a variety
of ends. Boshmaf, Muslukhov, Beznosov, and Ripeanu provide extensive analysis of SbNs and
define an SbN as a set of socialbots with three components: the botherder who controls the
socialbots, the socialbots that carry out tasks assigned by the botherder, and a Command and
Control (C&C) channel used to facilitate task assignment Boshmaf et al. (2011, 2013). Although
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SbN Name, Size Data MCSbN / CSbN
#InfluenceMarketer ALT16 yes / yes
• 93 core bots
• 1.26M tweets
• 9.44 mentions/tweet

@Du3a org ISIS14 no / yes
• over 125K users
• 12M tweets

Firibinome ISIS14 yes / no
• 72 core bots
• 12,254 tweets
• 5.54 mentions/tweet

Euromaidan Images EUR15 yes / no
• 8 core bots
• 385,715 tweets
• 4.53 mentions/tweet

Table 6.1: describes the four case studies included in our manuscript and their inclusion in the two botnet
classes presented therein: Social Cyborg Socialbot, and Mention Community Socialbot Networks.

Boshmaf et al. primarily present SbNs as a means to spread maleware and harvest user data,
a growing body of literature details SbN promotion of political agendas. Abokhodair, Yoo, and
McDonald (2015) describe the 35-week lifespan of a SbN on Twitter designed to express opinion,
testimony of ongoing events, and engage in preliminary conversation associated with the Syrian
Revolution Abokhodair et al. (2015). Similar techniques have been observed in the case of
ISIS’ online video dissemination as well Al-khateeb and Agarwal (2015)[citation removed for
blind review]. In some cases partially automated social actors or “cyborgs” have been observed.
Chu et al. (2010) discusses the distinction between humans, bots, and cyborgs on Twitter Chu
et al. (2010) where they define cyborgs as either socialbot-assisted humans or human-assisted
socialbots. They further discuss the advantages and hazards of Twitter’s facilitation of third
party applications through its API. Our work builds upon the aforementioned literature in that
we draw distinctions in role with respect to socialbots within the SbNs used for various forms of
promotion. Furthermore we introduce the first instances we know of a SbN that employs cyborg
users to carry out bot tasks.

6.3 Data
Each SbN presented within our manuscript is drawn from a similarly collected dataset. In each
case these datasets were collected originally for the study of online political activism, but in
each case we have frequently observed MCSbN and CSbNs. Each dataset has been collected
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using snowball sampling Goodman (1961), a non-random sampling technique where a set of
individuals is chosen as “seed agents”, and the k most frequent accounts followed by each seed
agent are taken as members of the sample. This technique can be iterated in steps, as we have
done in our searches. Although this technique is not random and prone to bias, it is often used
when trying to sample hidden populations [citation removed for blind review]. We seed searches
with sets of users that are known members of a larger community of interest we would like to
detect. We then collect additional users based on seed seed users’ social ties. In some cases we
iterate this process in “hops”, such as in the ISIS dataset explained in the following section.

6.3.1 ISIS Twitter Search (ISIS14)

In November of 2014 we seeded a two-hop snowball sample of influential ISIS propagandists’Carter
et al. (2014) following ties to test methods for online extremist community detection. The search
resulted in 119,156 user account profiles and roughly 186 million tweets. Within this dataset we
have detected two MCSbNs and nine CSbNs.

6.3.2 Euromaidan Twitter Search (EUR15)

The Euromaidan Revolution occurred as a wave of demonstrations starting in Ukraine in Novem-
ber 2013 and resulted in the removal of Ukrainian President Viktor Yanukovych from power. In
an attempt to study messaging themes used within the Euromaidan movement we conducted a
two-hop snowball sample of 8 known members’ mention ties from March 2014 to September
2015. The search resulted in 92,295 Twitter users and 215 million tweets. Within this dataset we
have detected two MCSbNs.

6.3.3 Alt-Right Twitter Search (ALT16)

In October of 2016 we seeded a one-hop snowball sample of 2482 users who each followed eight
influential Twitter users associated with the Alt-Right political movement. The search resulted in
106K users and collected 272 million tweets. Within this dataset we have detected five MCSbNs
and two CSbNs.

For each data set we construct two graphs. First we define M(V,E), a weighted directed
graph, with vertices V : {v1, ..., vn} consisting the users returned form our search. Edges
Em : {eM,1, ..., eM,m} are defined as the number of unique tweets where useri mentions userj .
We then define our reciprocal mention network R(V,E) with the same vertices V : {v1, ..., vn}.
However, we remove directionality by defining our edges to connote reciprocity as eR(j, i) =
argmin(eM(i, j), eM(j, i)). We will refer to both graphs M and R throughout Sections 6.4 and
6.5. When referring to examples within our case studies, we will introduce subscript referring
to each graph’s respective dataset. It is important to mention that many of the users captured
with this sampling technique will not share beliefs or opinions similar to seed accounts and typ-
ically community detection methods are used to identify sub-groups of similar opinion [citation
removed for blind review].
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Figure 6.2: examples of a core bot (left panel) and promoted cyborg bot (right panel) within the #Influ-
enceMarketer MCSbN. The mention behaviors exhibited by both are consistent with this core bot behavior
of frequently posting strings of mentions. However promoted bots more often post retweets of other pro-
moted bots as well as human-like content. In both cases lists of mentions are posted by the botherder to
promote users or content.

6.4 Methods
In this section we will introduce two special classes of SbN: Mention Community Socialbot
Networks (MCSbNs), and Cyborg Socialbot Networks (CSbNs). In each case we will define the
SbN, discuss the potential promotional objectives of each; we will also introduce a graph-based
detection strategy for MCSbNs. Examples of each class will be provided in Section 6.5 including
one instance that is both a MCSbN and CSbN.

6.4.1 Mention Community Socialbot Networks (MCSbNs)
MCSbNs are a special case of SbN where a subset of the socialbots are used to create a dense
community of users who mention one another with high volume and reciprocity. We believe this
class of SbN promotes users and/or narratives by inflating longstanding social network measures
of importance. Like other SbNs, they consist of socialbots, a botherder, and have a C&C channel;
however, MCSbN have two types of socialbot:
• Core Bots: bot accounts make little to no effort to appear as human users, but instead use

the content of their tweets to form a dense user community with lists of @mentions.
• Promoted Bots: accounts mentioned by core bots that attempt to influence a specific

online community of interest. These accounts can be bots or cyborgs.
Core bots predominantly mention and retweet each other creating a dense communities with

high reciprocity ( usera mentions userb, and userb mentions usera. However, the core bots also
mention highly followed accounts within a specific community of interest, as well as promoted
bots. An example of core bot behavior is depicted in the left panel of Figure 6.2, and the men-
tioning behaviors are visualized in Figure 6.4. In some cases promoted bots can also add edges to
the MCSbN by retweeting other promoted bots posts, as depicted in the right panel of Figure 6.2
as is done in user promotion MCSbNs that appear to be CSbNs as well.
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Figure 6.4 depicts the relationship between accounts mentioned by core bots within the
#InfluenceMarketer SbN (x-axis) and mentions by non-core bot accounts within the Alt-Right
OCT16 dataset. As will be explained in Section 6.5, the #InfluenceMarketer SbN is both a
MCSbN and a CSbN. Points depicted with squares are core bot accounts, and points outlined in
black are assumed to be SbN members based on their shared posting method via a specific third
party application. Points are sized and filled based on follower count. The plot highlights the
dense mention behaviors exhibited by core bots and the relationship between core bot mentions
and non-core bot mentions. This same structure is seen in each of the MCSbNs discussed in
Section 6.5.

Although we do not have access to the algorithms used by Twitter to prioritize content within
users’ feeds, we believe the behavior exhibited by MCSbNs promotes individuals and narratives
by artificially inflating node, edge, and graph level centrality measures. A user’s influence would
likely be measured based on node level metrics like degree centrality Wasserman and Faust
(1994), eigenvector centrality Bonacich (2007), or Page Rank Brin and Page (2012); each of
which would be artificially inflated by core bot behavior. In addition to inflating node-level
metrics, the quantity and types of edges formed by core bots creates misleading graph structures
as well. The research area of community detection searches for subsets of users that have a
greater density of ties within the group then when compared to the rest of the social graph, and
reciprocity is often used as a metric to indicate trust among users within a social network. Both
concepts have been used to understand the diffusion of news media within Twitter Kwak et al.
(2010) and find “centroids of discussion” Bessi and Ferrara (2016). Networked core bot behavior
creates fairly large, dense, communities of artificial users with high reciprocity, and it appears
that this core structure can be used to attract real users as well.

In many cases the density of core bots within an MCSbN’s mention network is also repre-
sented in follower and following ties, and it is possible that MCSbN behavior promotes following
ties as well. Triadic closure has been shown to be a strong predictor of homophily in social net-
works and refers to the concept of friendship being likely between individuals with common
social ties Kossinets and Watts (2006). If Twitter uses graph structure based concepts like triadic
closure to recommend followers, their recommendations would be influenced by MCSbN behav-
ior as well. In fact, we often see common followers across multiple core bot accounts. This could
also explain why each MCSbN within presented shows a similar pattern of mentioning highly
followed accounts within the MCSbN’s community of interest. This can be seen by the highly
followed and mentioned accounts depicted in Figure 6.4. Figure 6.3 depicts summary of the
most dense, distinct subgraphs consisting of between 30 and 200 users in the Alt-Right Twitter
Search. The x − axis connotes subgraph density, while the y − axis connotes size in terms of
users. Black circles indicate obvious MCSbNs where more than 50% of users whose mention
per tweet ratio was greater than 4.34, the 99.5 percentile of all 287K users collected. However,
many users within each of the 20 most dense subgraphs use lists of mentions when posting.

Because MCSbNs artificially create highly dense communities, dense subgraph detection of-
fers a logical means to detect them. Dense subgraph detection can be preferable when a complete
clustering of the data is not desired. We are not interested in assigning every user to a cluster,
but simply interested in highly connected communities exhibiting with multiple users exhibiting
core bot behavior. We have detected 10 overt MCSbNs using dense subgraph detection as pre-
sented in Chen and Saad (2012), with one caveat. Due to the excessively high reciprocity among
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Figure 6.3: depicts summary of the most dense, distinct subgraphs consisting of between 30 and 200 users
within the Alt-Right Twitter Search. The x−axis connotes subgraph density, while the y−axis connotes
size in terms of users. Black circles obvious MCSbNs, but many of the subgraphs showing high graph
density exhibit core-bot-like behavior and could represent more sophisticated MCSbNs.

MCSbN core bots, we define subgraph density of our undirected graph R with n vertices as:

dR =

∑n
i=1

∑n
j>i eR(i, j)

n(n− 1)/2
(6.1)

Just as presented in Chen and Saad (2012) we search for MCSbNs by constructing AR, a
weighted adjacency matrix of R and define CR, the cosine similarity matrix, as:

CR(i, j) =
〈AR(:, i), AR(:, j)〉
||A(:, i)||||A(:, j)||

(6.2)

We then set t = 2× |ER| and sort the largest t non zero entries of CR in ascending order. We
denote this sorted array asQ, and construct a hierarchy T based on its sorted vertex pairs. Finally
we extract the largest distinct subgraphs from T whose size falls within the interval (smin, smax)
and meets a minimum density threshold, dmin. We manually inspect this set of subgraphs, but
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off that other node level bot detection methods could be used to further filter subgraphs. We will
discuss this research topic further in Section 6.5. For a detailed discussion of the algorithm we
refer readers to Chen and Saad (2012), but we provide a summary of our approach in Algorithm 2.

Algorithm 2: Find core botnet members of an FMSbN
Input : Given a large sparse, weighted, reciprocal mention graph R, and density threshold dmin

Output: Set D : d1(v, e), ..., dn(v, e) such that each subgraph contains a subset of users exhibiting
behavior that meets the definition of a FMSbN core bot member.

1 Compute Matrix CR as defined in (2)
2 Sort the largest t non-zero entries of CR in ascending order, where t = nz(A). Denote Q the

sorted array.
3 Construct the hierarchy T according to the sorted vertex pairs designated by Q.
4 Extract Subgraphs of where dG ≥ dmin

5 Manually inspect subgraphs for FMSbN like behavior

Once we have identified a subgraph exhibiting core bot behavior, Vt, we then construct a
one-hop mention snowball sample of users within Vt to form graph Rt, a weighted, undirected
mention network. Vt and Rt serve as initial conditions for an iterative process where we define
Vt+1 as the vertices described by the largest 1− α percentile of edges in Mt by weight. We then
iterate this algorithm until Vt = Vt+1) to find additional core bots. A summary of our algorithm
is provided in Algorithm 3.

Algorithm 3: Find core and peripheral FMSbN accounts
Input : Given Vt a set of core bot FMSbN accounts and threshold α
Output: A set of core and peripheral FMSbN accounts.

1 while Vt 6= Vt+1 do
2 build graph Rt, a 1-hop snowball sample of the Vt mention network.
3 define Vt+1 by the largest α edges in Mt

4 if Vt = Vt+1 then
5 return Vt
6 else
7 Vt ← Vt+1;
8 return to line 2;

As stated earlier, we have used this process to detect MCSbNs core bots in a variety of
datasets, and have manually verified 5, 2, and 3 distinct MCSbNs in the Alt-Right, ISIS NOV14,
and Euromaidan Twitter Searches respectively. We present 4 cases in Section 6.5.

Conclusively detecting promoted bots is more challenging, particularly in MCSbNs that are
also CSbNs. However, dense subgraph detection of core bots could provide all that is necessary
for MCSbN mitigation as removal of core bots would most likely remove MCSbN effects. How-
ever, we see promise in combining graph level information like dense subgraphs, with node or
user level features. Most bot detection methods currently classify based on characteristics at the
node or instance level. Binary classification on annotated graphs offers a strong framework to
combine the two methods and will be discussed in greater detail in Section 6.6
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Rank Top ALT16 Users (co-mention degree)
1 @nayami rescue
2 @Socialfave
3 @sundoghigh
4 @TheMisterFavor
5 @SarCatStyX
6 @saravastiares
7 @KoichicCheryl
8 @realDonaldTrump
9 @Easy Branches
10 @lupash7

Table 6.2: Depicts top users in the ALT16 dataset co-mention graph with respect to weighted degree
centrality.

6.4.2 Cyborg Socialbot Networks (CSbNs)
Like MCSbNs, Cyborg Socialbot Networks (CSbNs) are special class of SbN where the social-
bots are bot-assisted humans as defined in Chu et al. (2010). Twitter’s API offers botherders the
ability to provide efficient C&C to their socialbot accounts, and in the case of CSbNs real users
become part of the social botnet by granting the botherder permission to perform tasks on their
behalf. This turns the user’s account into a “cyborg account.” Many Twitter users authorize third
party applications to automate a variety of actions from their account to include posting, follow-
ing accounts, or advertising. Tweets posted from these third party applications can sometimes
be identified by the “source” field provided within the tweet class Developers (2017), which has
been identified as a strong feature for bot prediction Lin and Huang (2013). In the case of the
CSbNs, it appears that users authorize the CSbN to perform tasks on their behalf, and the both-
erder can then use cyborg accounts as socialbots within his/her SbN. In some cases the cyborg
users appear to explicitly authorize the applications service, but in other cases they may not re-
alize what permissions they have granted the botherder. In either case, these CSbNs with large
user populations have a significant ability to manipulate online following networks or promote
content. We will present two CSbNs in detail in Section 6.5.

6.5 Results
6.5.1 MCSbN and CSbN User Promotion
The SbNs in this work appear to be designed to counfoud measures of influence in the Twit-
ter mention and comention graphs. As it is well known that bots can influence simple network
metrics like degree centrality, we are not surprised to find top accounts depicted in Table 6.2 to
exhibit behavior similar to the core bot behavior depicted in Figure 6.1. We then turn to more
complex network metrics that are better able to withstand spam and bot-like behavior. Specif-
ically, we PageRank ? and coreness Liu et al. (2014), two common, more complex metrics for
measuring influence in complex networks have been shown to be more robust to bot activity.
Both metrics are drawn from the family of radial-volume centralities Bonacich (1987), which
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Rank PageRank Coreness
1 @realDonaldTrump @2020sahara
2 @HillaryClinton @JuliaZek
3 @YouTube @Jerz Gal
4 @POTUS @DilrubaLees
5 @FoxNews @7artistai
6 @CNN @nayami rescue
7 @nytimes @wanderingstarz1
8 @timkaine @JulezPooh
9 @NASA @Dollhouse
10 @wikileaks @Edward733

Table 6.3: Depicts top users in the ALT16 dataset co-mention graph with respect to PageRank (left col-
umn) and Coreness.

attempt to quantify an account (or more generally, a network vertex) x’s influence based on the
influence of the other vertices to which x is linked. These measures can be viewed on a contin-
uum based on the length of walk considered in the neighborhood of a given vertex. Coreness
Kitsak et al. (2010) is calculated based on the concept of K-shells within a graph. A K-shell is
defined as the maximal subgraph of a given graph G, where all vertices are of degree greater than
or equal to k. A vertex’s coreness, Ks, indicates the greatest value k for with the node remains
in the corresponding k-shell. In addition to coreness, we also look at PageRank, or eigenvector
centrality, which is roughly defined as “accounts who are popular with other accounts who are
popular” Kwak et al. (2010). Each of these metrics can be confounded by the SbNs we define in
this work. For example top accounts with respect to coreness depicted in Table 6.3 again show
high levels of core bot behavior.

We identified the #InfluenceMarketer SbN while studying the 2016 United States Presiden-
tial Election using the methodology presented in Section 6.4 with α = .05, but the #followback
MCSbN depicted in Figure 6.3 is quite similar. Two overt MFSbNs of similar type and scale
were detected in the EUR15 dataset as well. The #InfluenceMarketer SbN is both a CSbN and
a MCSbN. Figure 6.4 depicts the degree with which the #InfluenceMarketer SbN confounds
coreness in the mention and comention graphs. We detected 93 core bots that exclusively post
@mention sets using two different third partly applications: Hootesuite and Android Follow Fri-
day Assistant. Core bot accou Another 1074 promoted bots post messages from one or more
of the applications, and are mentioned by core bots. Both account types are depicted in red in
Figure 6.4. The gray semi-transparent circles in both panels depict the remaining 106K users in
the ALT16 dataset. In both panels the x-axis depicts in-degree coreness in the mention graph, or
”what users are highly mentioned by accounts that are highly mentioned.” The y-axis in the left
panel depicts follower count in log scale, and the y-axis in the right panel depicts coreness in the
comention graph. In each case it is clear that measures of influence are inflated by McSbN activ-
ity. The behavior and its effect on the neighborhood mention network are depicted in Figures 6.1
and 6.4 respectively.

The promoted bots appear to be cyborg bots because they post what appears to be human
content from standard sources as well like Android, Iphone, or the Twitter web application,
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Figure 6.4: Red circles depict members of the #InfluenceMarketer McSbN. The gray semi-transparent
circles in both panels depict the remaining 106K users in the ALT16 dataset. In both panels the x-axis
depicts in-degree coreness in the mention graph, or ”what users are highly mentioned by accounts that are
highly mentioned.” The y-axis in the left panel depicts follower count in log scale, and the y-axis in the
right panel depicts coreness in the comention graph.

which leads us to believe that they are cyborg socialbots. In the case of the #InfluenceMarketer
SbN we do not know exactly what permissions users authorize the botherder’s C&C channel, but
they could include adding following ties, as we have seen in the Tweet Remembrance Family of
CSbNs discussed in the next section. This class of promotion MCSbN could allow the application
developer to sell retweets and followers directly, as well as artificially promote promoted users’
graph centrality as discussed in Section 6.4. We have found similar MCSbNs in Hindi, English,
Japanese, and Russian, and based on the pervasiveness of this SbN type we hypothesize that
they are a profitable endeavor for the botherder. As highlighted by Figure 6.3 we also frequently
observe MCSbNs used to promote the distribution of pornography and non-pornographic images.
These could be examples more in line with early work hypothesizing the use of social botnets
for malware dissemination Boshmaf et al. (2013), but the principles remain the same. Core bot
behavior appears to stimulate diffusion and sharing within an online community, and users could
subscribe to the MCSbN to promote a product or agenda of their choosing.

Not all CSbNs we have observed are marketed toward promoting users explicitly; we have
also observed much larger CSbNs that gain almost full control of large user populations. The
Tweet Remembrances Family of CSbNs have become highly popular in the Middle East. An
example of content posted using the @Du3a org CSbN can be observed in Figure 6.5. This user
subscribes to the application du3a.org that tweets Koranic verses hourly from his/her account.
Each verse contains the url du3a.org, which directs a reader to sign up for the application as
well. Upon authorization the application requests permission to to post, retweet, and follow,
and the terms of service authorize the application to change these permissions at any time with-
out notifying users. The applications also gains permission to advertise once daily from users’
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Figure 6.5: depicts cyborg botnet behavior common to the Tweet Remembrance family of Cyborg Social-
bot Networks. These applications tweet ’Islamic blessings’ from users’ accounts hourly, but some also
assume the ability update following ties and retweet as well. @Du3a org, the most popular example we
know of, had over 125K active users as of August 2016.

accounts, which could serve as the primary objective of the CSbN. As of August 2016 we col-
lected posts from over 125,000 unique accounts using the du3a.org application. The success
of We have found nine nearly identical CSbNs within our data which we believe is consistent
with this hypothesis. Although we do not imply that du3a.org violates any of Twitter’s terms of
use, we highlight that the @Du3a org botherder has the ability to adjust retweet and following
networks using over 125,000 accounts which could be monetized as well. Additionally, if the
MCSbN/CSbNs observed like #InfluenceMarketer have these same privileges they would have a
large base from which to sell retweets and followers as well.

It is important to note that the #InfluenceMarketer and @Du3a org SbNs do not appear to
violate Twitter’s terms of use, and the cyborg users who join them give the SbN explicit permis-
sion to perform these tasks. Many of the promoted bots we observe in the #InfluenceMarketer
MCSbN have clear objectives. Some of professionals using Twitter as a means to market their
businesses, others are bloggers seeking to increase their following. In each case, subscribers gain
a form of artificial trustworthiness from the SbNs service Ferrara et al. (2016a) that is misleading
and could be used for harmful ends. One concern as the ability to use similar methods to generate
artificial trustworthiness for geopolitical ends.

6.5.2 MCSbN Propaganda Dissemination
As stated in Section 6.2, evidence of SbNs designed to influence geopolitical discussion are be-
coming increasingly common, and we observe MCSbNs designed for these ends as well. Our ear-
liest and most overt example of a propaganda MCSbN is the Firibinome MCSbN. This MCSbN
consisted of 62 core bots that all shared the same profile image, the Jabhat al-Nusra flag, and sim-
ilar naming convention consisting of alpha-numeric strings after one of two prefixes translated:
firibinome, jishalba. The accounts each followed between 116 and 134 accounts (variability
could have been due to account suspensions), most of which were other core bots. Their follow-
ing counts varied from 142 to 322 accounts, many of whom appeared to be real Twitter users.
Each core bot posted 71 to 170 tweets over 38-58 days with each post exemplifying MCSbN
behaviors. Furthermore, each of the tweets were posted using the same third party application,
”tweetbots.com”, which is consistent with automated control from a single botherder. [citation
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Figure 6.6: depicts the directed mention network (top panel) and hash tag frequency (bottom panel) of
the 1-hop mention network associated with the Firibinome MCSbN. Nodes in the top panel are colored
based on degree centrality in the reciprocal mention network Black connotes high degree, grey low, white
indicates no reciprocity. Nodes are sized based on follower count. The bottom panel depicts the top 75
hash tags based on frequency in the network.
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removed for blind review] also show evidence of the botnet’s ability to generate discussion of
promoted accounts. All 62 core bots of the Firibinome MCSbN were collected as part of the ISIS
NOV14 dataset, and we develop an undirected network of all accounts mentioned by or mention-
ing the SbN. The network is depicted in the top panel of Figure 6.6. Nodes are colored by degree
in the reciprocal mention network, R as defined in Section 6.3, from gray (low) to black (high).
Nodes with white fill are mentioned by core bots, but do not mention them back. Nodes are
sized based on follower count, and framed in white were classified as core bots as described in
Section 6.4 with α = .1. We summarize the content of users in R based hash tag frequency
and visualize the top 75 terms in the lower panel of Figure 6.6. The structure of network plot is
consistent with the hypothesis that MCSbN was designed to enhance the botherder’s influence
within the Pro-Jabhat al-Nusra Twitter community, specifically the large, white nodes linking the
two clusters within the figure. Firibinome represents a propaganda MCSbN is its most primitive,
overt form.

Propaganda MCSbNs could be used to bridge online communities. Posting tweets that men-
tion users within distinct online communities could cause those users to follow one another. Ad-
ditionally, if Twitter uses triadic closure to recommend followers MCSbN behavior could achieve
this end as well. We detected the a MCSbN possibly designed to bridge Ukrainian users who
share artistic nude images with communities sharing news content supporting the Euromaidan
movement. We refer to this MCSbN as the Euromaidan Image Sharing (EIS) MCSbN, and de-
tected it using the same parameters used to detect the Firibinome MCSbN. The EIS MCSbN
consists of 8 core bots, most of which post hundreds of artistic nude images per day, each of
which contains a list of @mentions. The accounts they mention however belong to two rela-
tively distinct communities. Some of these mentioned accounts appear to be users interested in
similar pictures with similar posting behavior. Others are accounts used for anti-Russian political
activism. Figure 6.7 depicts the EIS MCSbN and is formatted similarly to Figure 6.6. How-
ever, hash tags in the bottom panel are colored based on their affiliation with the Euromaidan-
supporting community (gray) or image sharing community (black). K betweenness centrality
is often used on large graphs to identify nodes that connect distinct communities Ediger et al.
(2010). The measure quantifies how often a vertix lies on a shortest path of length no longer
than k between two other vertices in a graph. Because the core bots in the EIS MCSbN function
at the control of one botherder, we collapsed all of their edges into one node and calculated the
MCSbN’s k-betweenness centrality with k=5. The result was the the EIS MCSbN had the high-
est k-betweenness centrality of all 92k users within the dataset which highlights the power of
MCSbN behavior. Such methods could serve as a means to young men to geopolitically charged
news as an initial phase of radicalization. Although different content is used in this case, similar
grooming methods have been observed in ISIS’ recruiting strategy Berger and Morgan (2015a).

Within each of our datasets we have found a variety of overt instances of MCSbNs and
CSbNs. We discuss the challenge of confirming an MCSbNs when core bot behavior is more
human-like in Section 6.6, but we have found core-bot-like behavior frequently in highly dense
subgraphs in each of our datsets. In some cases the core-bot-like users posts hashtags and men-
tions, in other cases the user posts some mentions lists, and often mentions multiple users within
human like tweets. Figure 6.3 highlights several dense subgraphs that some would interpret as
discussion cores Bessi and Ferrara (2016). However, they may very well be MCSbN-assisted.
The figure highlights three examples where the core-bot-like behavior is more nuanced, but the
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Figure 6.7: depicts the directed mention network (top panel) and hash tag frequency (bottom panel) of
the 1-hop mention network associated with the Euromaidan Image Sharing MCSbN. The top panel is
formatted identically to Figure 6.6. The bottom panel depicts the top 75 hash tags based on frequency in
the network where color depicts the community most contributing to the hash tag’s frequency. Hash tags
from the Euromaidan-supporting community are depicted in gray, and the image sharing community tags
in black.

88



discussion core appears centered around a geopolitical objective. The “Evangelical” discussion
core consists of users who appear to be middle aged American women who overtly identify
themselves as evangelical Christians through their profile descriptions, usernames, and profile
pictures. However, the majority of their content is political in nature. Although we are contin-
uing to study this botnet, it could be used to bridge the evangelical voting community with a
particular candidate or it could simply be another instance of simulating a fake grass roots move-
ment. The #opisis discussion core appears to be a self-organized news community designed to
fight terrorism. Although we have not verified the content shared by this community or the pres-
ence of fake news within it, we highlight the dangers of charging such a topic area with artificial
trustworthiness. Finally, the #BoycotIsrael discussion core appears to be an attempt promote a
counter-narrative within a broader community. In each case further study is warranted to under-
stand the possible role of bots in their promotion, as well as the effectiveness of their promotion.
We recognize the need for additional work with respect to this important topic.

6.6 Limitations and Future Work
Even with the growing body of socialbot detection literature social bots remain a pervasive pres-
ence within social media. We find the performance of dense subgraph detection as a means to
detect MCSbN core bots drops when core bot mention behavior becomes more human like. In
both the Firibinome MCSbN and #InfluenceMarketer SbN, we find that each core bot post is de-
livered using an identifiable third party application. In the case of the #InfluenceMarketer SbN all
core bot activity and promoted bot retweets are posted using one of two applications: Hootesuite
and Android Follow Friday Assistant, the tapbots application is used in the Firibinome MCSbN.
In both cases we assume the respective applications used to post core bot mention lists as the
botherder’s C&C channel, and that all users posting with the C&C channel and showing reci-
procity with two or more verified core bots to be core bots as well. In the case of Firibinome, we
originally detect 46 core bots and find an additional 16 through the aformentioned criteria. The
#InfluenceMarketer bot, as described earlier, incorporates users to assign core bot like behavior.
Dense subgraph detection identified 61 core bots, and tweet analysis identified another 32. An-
other 1979 users are most likely promoted bots in that they are mentioned by core bots and post
using the C&C channel. We acknowledge that these assumptions might positively bias are esti-
mates of recall if additional C&C channels are used, but we see no alternative. Figure 6.8 depicts
estimated ROC curves associated with Algorithm 3 with α values ranging between (0, 1). The
#InfluenceMarketer MCSbN is depicted by the black solid line and the Firibinome MCSbN is
depicted by the gray dashed line. Again, we manually inspect dense communities returned from
Algorithm 2 which explains why the curve depicted in Figure 6.8 starts with recall of 75.2%
and precision of 97.2% for the #InfluenceMarketer MCSbN and recall of 74.2% and precision
of 100% for the FiribiNome MCSbNs respectively. The figure highlights highlights the highly
detectable community structure exhibited by MCSbNs.

Further study into how these bots manipulate radial-volume measures of centrality merits
further study as well. For example, we have not fully explored each botnet’s abilty to confound
metrics like betweenness centrality and PageRank. Furthermore, because these SbNs are de-
ployed in some cases as one structure consisting of many users, it would be usefull to explore
their influence in the graph when collapsed into one node. The results shown with respect to
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Figure 6.8: depicts estimated ROC curves associated with α values ranging between (0, 1). The #Influ-
enceMarketer SbN is depicted by the black solid line and the Firibinome MCSbN is depicted by the gray
dashed line.

the Euromaidan Image McSbN imply that these structures can prove more influential than single
users. However, an in depth study of these questions is needed.

Although dense subgraph detection identifies the core bot network of MCSbNs well, it does
not appear to adequately identify promoted bots. We see potential in augmenting a dense sub-
graph based approach with instance based or node centric approaches like those mentioned in
Section 6.2. In fact the binary classification on annotated graphs offers a means to use both so-
cial graph location, and node level features, and we have successfully implemented this strategy
to detect Online Extremist Communities [under review PLOS ONE, citation removed for blind
review]. This would enable practitioners to use both dense subgraph detection and traditional
bot detection approaches in concert with one another, and we hope to apply these methods for
MCSbN detection in future work. Such advances will be necessary in order to conclusively
identify artificial promotion within geopolitical discussion cores.

As stated by Boshmaf, Muslukhov,Beznosov, and Ripeanu (2012), “defending against mali-
cious socialbots is an arms race”, and it is unlikely that detection efforts alone will offer adequate
mitigation. Boshmaf et al. rightly propose a framework of socio-technical challenges for mitigat-
ing the effect of SbNs organized in three lines of effort: web automation, online-offline identity
binding, and usable securityBoshmaf et al. (2012). With the growing body of literature that high-
lights the impact of large-scale manipulation of OSNs, responsible incorporation of safeguards
along all three lines of effort are likely needed. We hope that this work helps motivate future
research in this regard.

6.7 Conclusion
In this paper we have discussed the dangers of unmitigated proliferation of propaganda promot-
ing SbNs in Twitter and defined to specific classes of them: MCSbNs, and CSbNs. We have
also shown their increased frequency and their application to both individual user promotion and
propaganda dissemination. We have also presented 4 novel instances of these SbNs that high-
light the scale with which they are employed, and discussed other possible MCSbNs embedded
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within online discussion cores. We also have introduced the concept of applying dense subgraph
detection to identify MCSbN cores, and propose future research to further automate the detection
of artificially promoted users.
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Chapter 7: Discussion

Understanding social media’s emergent role in the shaping of geopolitical opinion is critical.
From the Arab Spring (Gerbaudo, 2012; Howard et al., 2011; Wolfsfeld et al.) to the Color
Revolutions in Eastern Europe (Jurgenson, 2012; Szostek), to the rise of populist movements
like Brexit (Engesser et al., 2016) and extreme-right fake news associated with the 2016 United
States presidential election (Allcott and Gentzkow, 2017; Benkler et al.) many ascribe online
social networks as being a conduit to energize offline behavior. Having operated in areas of
the world now affected by these OECs, I have great interest in applying quantitative methods to
assist social scientists and practitioners in understanding these communities and movements. The
work presented in this thesis represents an initial step toward understanding of these powerful
phenomenon.

Contributions
Although the body of work in this area of research continues to grow, there appears to be a
needless bifurcation in the field. The findings of researchers studying the use of social media
in the spread of violent extremism Al-khateeb and Agarwal (2015); Berger and Morgan; Ferrara
et al. (2016b) observe similar phenomenon to those who discuss social media use for political
activism. Furthermore, our observation of both types of activism appears to indicate that these
groups self organize using a the affordances provided by the OSN. Communities are formed and
curated in Twitter using hash tags, direct mentioning, as well as following relationships. This
complex, dynamic environment forces us to use complex, heterogeneous graph representations
to precisely identify these groups of users.

The work in this thesis provides a new ways for researchers to answer three critical research
questions with respect to online marketing and its role in geopolitical opinion:

• How can we detect large dynamic online activist or extremist communities?
• What automated tools are used to build, isolate, and influence these communities?
• How can we gain novel insight into large online activist or extremist communities?

The methodological framework and associated algorithms presented in Chapters 3 and 4 ( de-
picted in Figure 7.1) will enable researchers to quickly isolate specific online communities for
study. While the methodologies presented in Chapter 5 will enable researchers to mine these
large online communities for novel insight. Furthermore, the detection methods and descrip-
tion of social influence botnets in Chapter 6 is an important contribution toward understanding
the tools used to manipulate online communities. The specific algorithms presented throughout
this thesis merely represent what I have found useful for these tasks, and it is likely that other
algorithms could be useful when applied to other types of communities or within other OSNs.
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Figure 7.1: Depicts OEC detection as a methodological pipeline. Data Collection is conducted using
snowball sampling then training sets are developed using unsupervised methods like HDSD and HEAC.
Larger portions of the OEC can then be detected using supervised learning.

Moreover, the methods and data developed are both re-usable and can be made available upon
request. A tutorial covering the methods introduced in Chapters 2,3,4, and 6 is provided in Ap-
pendix ??. My hope is that this work both equips and motivates ongoing collaborative research
between computational and social scientists.

Moving Forward
As many before me have found scholarship often leaves one with more questions than at the start.
The contributions presented in this work could be extended in a number of fruitful areas. One
such area would be a more formal framework to incorporate latent data structure to prioritize
manual labeling of users. This could be done by gaining a better understanding of the latent
substructure within large OECs like the SRTC. Applying clustering algorithms like DBSCAN
(Ester et al., 1996) or others(Sajana et al., 2016) to MVC feature spaces could prove useful. It
is also likely that specific clustering algorithms will outperform based on the amount of sub-
structure within OECs. Furthermore a great deal of latent information remains in user profiles.
For example, URL sharing has become increasingly popular as Twitter has become primarily
a publication platform. The techniques used to leverage hash tags in this work could easily be
extended to URLs. A great deal of linguistic information remains untouched in users’ tweets as
well. Topic modeling could offer useful discriminatory value as well and could be incorporated
in a relatively straight forward manner in MVC feature spaces.

Another equally important area for continued work would be better incorporation of tem-
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poral dynamics. Many of the weighted graphs utilized in each of the chapters have temporal
information which we have not incorporated. For example each edge within an undirected men-
tion graph represents a time series of tweets between users a and b. However, the complex
relationships between users and content with detected communities preclude us from leveraging
nearly all statistical methods that address auto-correlation. Simple extentions like incorporation
of temporal decay when developing edge weights would likely be beneficial and could likely be
done with little computational expense. However, this problem is complicated by the limitations
imposed by the Twitter API. Currently, the API only allows a researcher to download up to a
users last 3200 tweets. This dramatically effects the time interval defined by a given users first
and last tweet collected. These differences from user to user influence the time potential time
interval between any two users for there to be interaction. Thus out weighted edges within such
a graph could be normalized with respect to time. Furthermore, we have not utilized the time
stamps on tweets to research diffusion patterns with activist communities. Incorporation of the
rich temporal information that exists within our data would likely improve findings.

It is also likely that practitioners or follow-on researchers will find the relative cost of data
low, but the cost of manual labeling high. It is also possible that initial supervised modeling
efforts may prove to have insufficient accuracy. A formalized active-learning framework for up-
dating Multiplex Vertex Classification results could prove highly beneficial. In some cases active
learning techniques have proven to exponentially reduce training data needs (Settles, 2010b).
One such class of active learning is called uncertainty sampling and prioritizes unlabeled in-
stances that in some respects are “closest” to our classifier’s decision boundary. In my experi-
ence the speed and performance of decision forests have been preferable for this task and some
literature exists that could enable active learning strategies. Criminisi et al. (2012) introduce the
concept of density forests that assuming the unlabeled dataset was created via a probabilistic
density function which is to be learned via the datasets latent structure by minimizing an entropy
function with each tree. This framework then provides an understanding of where areas of high
uncertainty are within the dataset to prioritize manual labeling. The challenge associated with
this framework lies in the authors assumption of a Gaussian Mixture Model for their probabilistic
generating function. Such models typically assume relatively simple covariance structures which
are likely invalid when applied social networks where our users’ interdependence of primary in-
terest.

In general, an active learning framework would enable the methods presented in this work to
empower the researcher or analyst employing them. Often the end user of these methods would
likely have unique regional expertise that could be incorporated into training sets. The ability
of an end user to interact with this data and efficiently provide feedback (or labelled data) to the
training set offers great potential. In fact, a well user-oriented graphical interface would enable
the end user to improve his algorithm while exploring/interacting with the data. Such a system
could identify small sets of seed agents for follow on exploration. For example, an analyst
interacting with the Syrian Revolution Twitter Community might find a set of users sharing
photographs and new stories in Yemen. My experience in developing these methods is that often
times information in user timelines is not necessarily embedded in text. Often times images
or shared videos are what indicate the individuals support of specific groups or ideologies, and
effective image detection or video detection are unlikely to be quickly employed in this context.
An interface that efficiently capitalizes on the regional experts domain knowledge to empower
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him or her with more data is a worthy human-computer interaction endeavor.
The proliferation of social influence botnets in a variety of marketing applications implies the

need for a significant research efforts, and as presented in Chapter 6 there is very little research
in this important area. Although a significant contribution of this work is our detection method-
ology, we have not found an effective means to measure the effect of these network structures on
individual perception. The prevalence of them within marketing areas like pornography imply
their effectiveness; however we have been unable to quantify this formally. Effort to do so could
present a critical step forward in understanding how online activist communities are formed and
manipulated.

All of these shortcomings could be compounded as efforts to remove groups and narratives
become more advanced. Just as the rich affordances offered by online social networks can be
used to curate groups, they can be used to obscure observation and intervention. For example,
we have started to observe community managment tools like commune.it that could be used to
hide relevant traffic within a community through spam. These software tools offer the ability to
post messages at scale as well as filter content at scale. They could easily be used to hide relevant
OEC communication within a sea of what appears to be irrelevent content. By simply assigning
a hash tag or term that can be filtered on, group members can remove the content that obscures
relevant tweets.

Community management software applications are just one observation from within these
dynamic information ecosystems. As methods to influence online communities and intervene in
OECs mature, groups will adapt. We have already observed predator-prey like evolution within
this work, and expect this behavior to continue. Thus the methods presented in this work must
be contiually refined to address these changes in group curation methods.

Finally and most importantly, this research is about people. What is the effect on people
who’s activity draws them into one of these communities? What are the cognitive effects of
online community activism? The structures I have observed often appear to have their own
news sources and in many cases appear to be composed of individuals highly susceptible to
confirmation bias. Where the true contribution of this work will be, is if it can help us understand
how individuals become extremists and what can be done to mitigate these processes.
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Appendix A: Data

Each of the datasets used within this dissertation was collected in a similar fashion, and I will
describe my collection methods and each dataset within this appendix.

To develop each of my datasets, I instantiate an n-hop snowball sampling strategy Good-
man (1961) with known members of my desired network. Snowball sampling is a non-random
sampling technique where a set of individuals is chosen as “seed agents.” The k most frequent
friends of each seed agent are taken as members of the sample. This technique can be iterated in
steps, as I have done in my search. Although this technique is not random and prone to bias, it is
often used when trying to sample hidden populations Berger and Morgan (2015b).

The snowball method of sampling presents unique and important challenges within OSNs.
Users’ social ties often represent their membership in many communities simultaneously (Tang
and Liu, 2010). At each step of my sample, this results in a large number of accounts that have
little or no affiliation with a OEC of interest. The core problem of then involves extracting a rel-
atively small OEC embedded in a much larger graph. In order to do so, I require rigid definitions
of account types which will be used for the remainder of this proposal. I define three types of
user:

OEC member: A Twitter user who’s timeline shows unambiguous support to the OEC
of interest. For example, if the user positively affirmed the OEC’s leadership or ideology,
glorifies its fighters, or affirms its talking points. It is important to mention that a member’s
support is relative and in many cases not in violation of local law or Twitter’s terms of use.
However, the volume of these “passive members” appears to be an essential element of
OECs ability to reach populations prone to radicalization Veilleux-Lepage (2015)
non-member: A user whose tweets are either clearly against or show no interest in the
OEC of interest.
official user: I label vertices as official users if they meet any of the following criteria:
the user’s account identifies itself as a news correspondent for a validated news source;
the account is attributed to a politician, government, or medium sized company or larger,
or accounts with greater than k followers. This third is necessary to account for OEC
members’ dense ties to news media, politicians, celebrities, and other official accounts.
Such accounts are interesting in that there higher follower counts and mention rates tend
to make them appear highly central even though they do not exhibit any ISIS supporting
behaviors. Official users must be identified and removed for accurate classification of ISIS-
supporting, thus illustrating the utility of an iterative methodology. This will be discussed
in detail in Chapter ??
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Syrian Revolution Community Twitter Searches
Date Seed Accounts Search Return + Cases Detected OEC
NOV15 16,538 91,256 3,572 8,126
MAR16 3,295 87,724 2,529 9,086
DEC16 4,258 118,879 4,567 NA

Euromaidan Community Twitter Searches
Date Seed Accounts Search Return + Cases Detected OEC
AUG15 8 92,295 1,221 4,307
MAR17 1,175 92,076 4107 NA

Alt-Right Twitter Search
Date Seed Accounts Search Return + Cases Detected OEC
AUG15 8 92,295 1,221 4,307

Table A.1: Describes the Syrian Revolution (top panel) and Euromaidan (bottom panel) Twitter searches
as well as OEC detection results.

A.1 Islamic Terrorism Datasets
I develop three distinct datasets with respect to discussion centered around ongoing conflict in
the Middle Easte. The first instance is the ISIS NOV14 dataset discussed in Chapters 3 and 4,
but I have used IVCC to update this dataset twice. Each instace is described below.
• ISIS NOV14 Twitter Search (ISIS NOV14) (Search Date: November 2014) This dataset

consists of a 2-hop snowball sample of 5 influential ISIS propagandists’Carter et al. (2014)
following ties conducted in November of 2014. The search resulted in 119,156 user ac-
count profiles and roughly 862 million tweets. Approximately 18,000 accounts have been
deleted or suspended by Twitter as of April 2017, and many of these appear to deleted due
to support of violent extremism. This offers a unique set of meta-data that can be inferred
as ground truth. For details see Chapters 3 and 4.

• Syrian Revolution Twitter Community Search (SRTC NOV15) Using 16,538 active (as
of NOV15) accounts predicted as ISIS-supporting in Chapter 3, I seeded a 1-hop snowball
sample of users following and mention ties resulting in 91,256 accounts and 179 million
tweets.

• Syrian Revolution Twitter Community Search (SRTC MAR16) Similarly, I collected
another update of the SRTC in March of 2016 using 3,295 accounts’ following ties result-
ing in 87,724 users and 185 million tweets.

• Syrian Revolution Twitter Community Search (SRTC DEC16) I again updated the
SRTC in December of 2016 using 4,258 accounts’ following ties resulting in 118,879
users and 230 million tweets.

A.2 Euromaidan Datasets
The Euromaidan movement started as a series of protests in November 2013, where large num-
bers began to call for the removal of then President Viktor Yanukovych. These protests reached
their peak in February 2015, ultimately leading to the removal of many of Ynukovych’s senior
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officials, and were a precursor to Russia’s subsequent occupation of Crimea. Despite the instal-
lation of a new government, a substantial online activist community continues to oppose Russian
influence in the Ukraine and are often described as part of the Euromaidan Movement (Szostek).
We will refer to this community as the Euromaidan Twitter Community (ETC). Here, although
strong negative sentiment toward the current Ukrainian government is observed, the online ac-
tivism seen largely advocates change through legitimate government processes. Thus, while we
acknowledge that little “extremism” exists in this community, this community is of strategic in-
terest to organizations like the North American Treaty Organization (NATO) due to its relevance
to ongoing geopolitical events in the region.
• Euromaidan Twitter Community Search (ETC AUG15) This community was extracted

originally from a two-hop snowball sample of 8 known Euromaidan movement members’
mention ties in March 2014. The search resulted in 92,295 Twitter accounts, and manual
inspection of EAC output yielded a community of 1,221 accounts actively supporting the
movement.

• Euromaidan Twitter Community Search (ETC MAR17) Similar to SRTC updates, the
1,209 remaining active members of ETC were used as seed users to update the community.
A 1-hop snowball search of following ties in March of 2017 resulted in 92,706 Twitter
users and 212 million tweets.

A.3 Alt-Right Twitter Search
alt-right community (ALT16) dataset. In October, 2016 we seeded a one-hop snowball sample
of 2482 users who each followed 5 influential Twitter users associated with the Alt-Right polit-
ical movement: Richard Spencer, Jared Taylor, American Renaissance, Milo Yiannopoulos, and
Pax Dickinson. The search resulted in 106K users and 268 million tweets.

99



Appendix B: OEC Detect Tutorial

100



Tutorial: Detecting Pro-Maidan and Anti-Maidan
Communities on Twitter

Authors: “Dr. Matthew Benigni and Dr. Kathleen Carley”

Introduction

Online social networks have become a powerful venue for political activism. In many cases large, insular
online communities form that have been shown to be powerful diffusion mechanisms of both misinformation
and propaganda. We see these methods primarily as a means to study online communities and their role in
political activism. To do so we will use online discussion centered around the Euromaidan Movement on
Twitter. The Euromaiden Revolution occurred as a wave of demonstrations starting in Ukraine in November
2013 and resulted in the removal of Ukrainian President Viktor Yanukovych from power. A large online
community centered around the Euromaidan Movement still exists on Twitter and shares content that opposes
Russian influence within Ukraine. However, a sizeable counter movement is present as well. We will refer to
these two online activist communities as the Pro-Maidan and Anti-Maidan communities respectively. We will
use these two groups to illustrate Iterative Vertex Clustering and Classification, a methodological pipeline
developed my Matthew Benigni as part of his doctoral thesis work at the Center for Computational Analysis
of Social and Organizational Systems (CASOS), and hope that these methods enable researchers to better
understand how online communities form and influence political outcomes.

In this tutorial we will start with a samle of over 90,000 Twitter users and identify 7500 Pro-Maidan users and
6000 Anti-Maidan as a supervised learning task with evaluated accuracy over 92%. We use an unsupervised
learning method called Ensemble Agreement Clustering to develop a sufficiently large number of positive
case examples of each group. Once we have labelled data, we develop feature space that accounts for social
structure described by following and mention ties, as well as hash tag use and user profile characteristics. To
do so, we extract spectral features from each graph independently, and train a random forest classifier to
detect each user type. Descriptions of this methodological pipeline are are presented in detail in the following
works:

1. Benigni, Matthew. “ Detection and Analysis of Online Extremist Communities (Unpublished doctoral
thesis).” Carnegie Mellon University School of Computer Science, Pittsburgh, PA.

2. Benigni, Matthew, Joseph, Kenneth, and Carley, Kathleen. n.d. “ Online Extremism and the
Communities that Sustain It: Detecting the ISIS Supporting Community on Twitter.” To appear PLOS
One.

3. Benigni, Matthew, Joseph, Kenneth, and Carley, Kathleen. n.d. “ Mining Online Communities to Inform
Strategic Messaging: practical methods to identify community-level insights.” To appear Computational
& Mathematical Organization Theory.

4. Benigni, Matthew and Carley, Kathleen. “From Tweets to Intelligence: Understanding the Islamic
Jihad Supporting Community on Twitter.” Springer, Social Computing, Behavioral-Cultural Modeling
and Prediction,To appear Spring of 2016.

Tutorial Materials and System Requirements

Source code and data is available on at foundation.casos.cs.cmu.edu:/usr1/mbenigni/euromaidan/output/tutorial/
all files referenced in this folder are available at the provided paths. The tutorial is designed to be executed
in RStudio by executing the various “chunks” of code annotated in this document, which are included in the
tutorial zip file as tutorial_script.R.
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We have executed each of the code blocks on a MacBook Pro with 8GB of RAM and a 2.8 GHz Intel Core i5
processor running OS X Yosemite Version 10.10.5. We have not debugged this work in Windows or Linux
and welcome feedback.

Data

In previous work we have used many different sampling strategies, but find that snowball sampling known
members’ following ties typically returns useful results. Snowball sampling is a non-random sampling technique
where a set of individuals is chosen as “seed agents.” The k most frequent accounts followed by each seed
agent are taken as members of the sample. This technique can be iterated in steps. For example, in a two-hop
snowball sample of users’ following ties we would take the union of our seed agents’ following ties to define
the seed agents for hop 2. Although this technique is not random and prone to bias, it is often used when
trying to sample hidden populations. It is also worth noting that it tends to return very large, noisy data
sets due to users simultaneous membership in many online communities. In fact we have recently found that
snowball samples need to be executed one hop at a time. Following networks have become quite dense due to
cyborg and bot activity, and often times rules need to be applied to trim returns in the second hop of the
sample. The majority of those accounts returned by this search technique are typically not of interest, and
standard network clustering techniques fail to extract our communities of interest with adequate precision.
Therefore we need to partition this set of users in two groups: community members, and non-members. This
data set consists of a one-hop snowball sample of 1,209 previously detected Euromaidan-supporting users’
following ties.

Overview

We will detect these communities using a pipeline of methodologies. It is useful to think of these methods in
the following phases:

1. Collection: (assumed complete for this tutorial) This can be done using twitteR or Tweepy or any of
the related libraries/packages designed to collect data from Twitter’s API. We use (twitter_dm)[https:
//github.com/kennyjoseph/twitter_dm].

2. Cleaning and Graph Construction: (assumed complete for this tutorial) In this chunk of code we
will conduct some minor cleaning of our edgelists to form an annotated, heterogeneous graph. The
graph is heterogeneous because it has multiple edge types ( mention ties, following ties, hash tags, etc.
) and multiple node classes ( users, and hash tags ); it is annotated in that the nodes of the graph have
useful information associated with them like profile attributes.

3. Removal of Official Accounts: In this section we will extract an instance-based learning feature
space ( i.e. rows are users and columns are numerical features) that accounts for each of our graphs and
profile information. We then use a list of known “official” accounts to train a classifier and identify
similar accounts for removal.

4. Training Set Development: training a classifier requires large sets of labelled users. We have
developed a method that detects sets of active users who align around an identifiable cause. This
method is similar to dense subgraph methods in that we are not interested in a complete clustering of
the data, but only users who fall into one of these “discussion cores.” We run this clustering algorithm
and then manually inspect output to find positive case instances to train our classifiers.

5. Detect The Pro-Maidan Twitter Community: using the same methods used to remove “celebrity-
like” accounts in Phase 3, we build a new feature space (with celebrity-like accounts removed) and train
a classifier to detect the Pro-Maidan Community.

6. Detect The anti-Maidan Twitter Community: using the same feature space, and anti-Maidan
training examples, detect the Anti-Maidan Cummunity.
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Load functions for tutorial

#Chunk 1: Load OEC Detect Functions
source('sourceCode/main.R',chdir=TRUE)

Phase 1. Collection

1213 seeds ( see foundation.casos.cs.cmu.edu:/usr1/mbenigni/euromaidan/euromaidanUpdate.csv)
following ties resulting in 97,354 files ( see ~/snowballEuromaidan.csv). The search returned 92,706
accounts. Often times some accounts have protected their tweets resulting in fewer returns than the initial
search list. To execute the collection we use the Python library twitter_dm. We use the script
#Chunk 1a
nohup python /usr0/home/mbenigni/twitter_dm/examples/collect_user_data.py api_key_path
output_path search_id_file_path

The search writes two files per user id to the directories obj and json. The files in the directory obj contain
profile information for each user, and the files in the json directory contain each users tweets.

Phase 2. Cleaning and Graph Construction

I this phase we transform twitter_dm output into a variety of edgelists and a node table. We then transform
the edgelists into an annotated heterogeneous graph in R.

In Chunk 2a we again call a Python script to generate the required edgelists. The script can be found in
twitter_dm/examples/netBuilder_serial.py and requires only one argument the output path.
#Chunk 2a
nohup python /usr0/home/mbenigni/twitter_dm/examples/netBuilder_serial.py tutorial/

The scripts outputs the following files:

• attribute.tsv - contains user profile attributes like follower count, creation date, etc. Additional attributes
associated with the user’s timeline are summarized as well like how many @mentions are included in
the tweets returned from the user’s tweets.

• friend_edge file.tsv - a directed graph edge list of the following or “friend” ties associated with the
userID in the Source column of the edge list.

• mention_edge file.tsv - a directed graph edge list of the mention ties associated with the userID in
the Source column of the edge list. The epoch time of the post containing the specific @mention is
provided as well as the tweet ID.

• user_ht_edge file.tsv - a bipartite graph edge list where the Source node class is users and Target node
class are hash tags. Each instance refers to a hash tag used in a given users tweet. Again, the time of
the post is provided in epoch time.

• langfile.tsv - Twitter conducts language detection on each post and provides their label in the json
of each tweet. This file provides the language prediction for each tweet in our corpus as well as the
associated userID. We summarize this information to express a vector of language preference for each
user.

• officialIDs.csv - This is a list of accounts that are either journalists, celebrities, or official government
accounts. We find that this type of account must be removed through machine learning for accurate
community detection, and this list serves as positive case instances for this task.
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To build our heterogeneous graph H we start with a summary of information at the user level by uploading a
table of user attributes, attribute.tsv. We clean this user set by removing two user types: dormant users,
and accounts that are likely Mention-core SocialBot Networks. Mention-core SocialBot Networks are artificial
social structures used to influence online communities. They typically post long strings of @mentions to
confound measures of social influence, so we remove accounts with an anomalously high mention:tweet ratio.
In this case the top 99.5 percentile. For more detail see Thesis Chapter 6. Dormant users are defined as
any user who has not posted within 12 months of the profile collection date, and we simply remove accounts
based on the time stamp associated with the users’ last tweet.

We then use this trimmed set of users to build directed, weighted graphs. The mention graph M consisits of
users as nodes and an edge is defined as the number of times user i mentions user j. The following graph F is
a directed, binary graph where an edge indicates user i follows user j. We also construct a bipartite graph H
where source nodes are users and target nodes are hash tags. An edge is defined as the number of times that
user i used hash tag j in his last 3200 tweets.

Finally, we normalize each users language behaviors into a vector in langDF. The result is a rich graph
structure that allows us to detect communities of interest based on the many affordances offered by Twitter
for group curation. Expect this chunk to take roughly 13 minutes to execute. In this chunk we introduce four
functions: upLoad(), buildDirectedGraph(), buildBipartiteAdjacency(), and languageCast(). Documentation
for each function is provided at the end of the tutorial. **This chunk is optional, but can be executed with
the following downloaded data file:maidan_tutorial_edgelists.zip**.
# Chunk 2: Build Annotated Heterogeneous Graph
a=upLoad('attribute.tsv')
a=a[order(a$userID),]

mentionRatio=a$mentionCount/a$tweetsCollected
a=a[mentionRatio<=quantile(mentionRatio,.995),]

lastTweet=as.Date(a$lastTweet,origin='1970-01-01')
a=a[lastTweet>=(range(lastTweet)[2]-365),]

F=buildDirectedGraph(nodes=a$userID,'friend_edgefile.tsv')
M=buildDirectedGraph(nodes=a$userID,'mention_edgefile.tsv')
Ah=buildBipartiteAdjacency(sourceNodes=a$userID,

edge_path='user_ht_edgefile.tsv',
minUserCount=5)

langDF=languageCast(nodes=a$userID,lang_path='langfile.tsv')

As a result, we have reduced our dataset from 92,706 users to 83,481 users and constructed a directed following
graph, F, mention graph, M, and an adjacency matrix for the bipartite user, hash tag graph, Ah. Each row
in the node table a as well as each graph refer to the same user. This graph representation allows us to
incorporate a great deal of community behavior for classification which will be shown in the next phase.

Phase 3: Identify and Remove Celebrity-like Accounts

Differentiating between users who are important locally (i.e. within the community of interest), and globally
within Twitter is challenging to do. We find that one must first remove “celebrity-like”" accounts as a
supervised learning task. In this phase, we will develop a rich feature space by extracting the k lead eigen
vectors associated with undirected versions of F and M. We will also use svd decomposition to extract the
first k vectors of the “left matrix” associated with our bipartite graph Ah. This is the most computationally
expensive step in this pipeline, and you can expect this section of code to take approximately 10 minutes to
run. Documentation for the classifierFeatures() function is provided at the end of the document.
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# Chunk 3a: Remove Official / Celebrity Accounts as a Supervised Learning Task
load('RData/tutorial_graphs.RData')
A=classifierFeatures(a,langDF,F,M,Ah,k=5)
rm(langDF,F,M,Ah)

We then use a list of manually verified Twitter user ids of journalists, celebrities, and government officials
to train a classifier. Anomalously high page rank consistently returns celebrity accounts in large Twitter
samples like the one we are working with, so additional positive case inferences are used based on the 99.9%
percentile of PageRank centrality in the directed mention graph. The result is a list of 1225 examples of
“official accounts” with which to train a classifier. We then use the function trainTestSplit() to randomly
select negative case examples and separate our data into a training set, testing set, and set of unlabeled data
with which to apply our classifier.
# Chunk 3b: Build Positive Case Training Instances
celebLikeIDs=upLoad('celebrityLikeIDs.csv')$V1
celebLikeIDs=unique(c(celebLikeIDs,A$table$userID[A$table$m_pageRank>=quantile(A$table$m_pageRank,.999)]))
celebLikeIDs=celebLikeIDs[celebLikeIDs %in% a$userID]

# Develop list of training data, testing data, and data for classification
T=trainTestSplit(nodeIDs=A$table$userID,

feature_set=A$features,
posIDs=celebLikeIDs,
negIDs=NULL,
randomNegCount=2000,
p.test.split=.4)

With our train, test, and classification data now output in list T. We can begin model development. The
function classifier can be implemented in evaluation mode, where simply model performance on test data is
returned in the console. Additionally, the csv file featureSet.csv can be used to select specific features while
developing the model. In Chunk 2c we train a random forest classifier to identify and remove official accounts.
# Chunk 3c: develop model
classifier(data_list=T,

algorithm='randomForest',
evaluation=TRUE,
metric='Kappa',
ratio=.5,
feature_import=TRUE,
label='celebLike')

As can be seen, both accuracy (.9233) and Cohen’s Kappa (.8348) are sufficient for implementation. We now
apply the classifier to our unlabeled data and inspect results with two html files which are written to the
working directory in the folder “pages.”
# Chunk 3d: apply classifier
predicted=classifier(data_list=T,

algorithm='randomForest',
evaluation=FALSE,
metric='Kappa',
ratio=.5,
feature_import=TRUE)

pageIt(data.frame(link=hyperlink(a$ScreenName[a$userID %in% sample(predicted,20)])),'predicted.celebLike','pages')
not_predicted=T$predictIDs[!(T$predictIDs %in% predicted)]
pageIt(data.frame(link=hyperlink(a$ScreenName[a$userID %in% as.numeric(sample(not_predicted,20))])),'not_predicted.celebLike','pages')
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When satisfied with classifier output, we can remove official accounts and rebuild our feature space. When
we are done calculating Chunk 2e Phase 2 is complete.
# Chunk 3e: Remove celebrity-like accounts and rebuild feature space
a=a[!(a$userID %in% as.numeric(c(celebLikeIDs,predicted))),]
v.remove=as.character(c(celebLikeIDs,predicted))
F=delete_vertices(F,v=v.remove)
M=delete_vertices(M,v=v.remove)
Ah=Ah[!(row.names(Ah) %in% v.remove),]
langDF=langDF[langDF$userID %in% a$userID,]
A=classifierFeatures(a,langDF,F,M,Ah,k=5)

Phase 4: Develop Training Data

In this phase we will use unsupervised, dense subgraph clustering methods to detect large sets of users who’s
behavior is of interest. We start by defining two user types of interest:

• pro-Maidan Community Member: a user who displays content that supports ongoing operations to
repel Russian influence/forces from Ukraine. This content could be in the form of direct solicitation
of support for forces. Sharing sharing of news associated with Russian corruption inside or outside
Ukraine is also consistent with the Euromaidan Community.

• anti-Maidan Community Member: a user who displays overt support for Russian influence in Ukraine.
These users brand Euromaidan forces as terrorists, denounce the current Ukrainian government, view
Putin’s influence in the region in a positive manner.

We run ensemble agreement clustering to detect sets of users who organize around an identifiable cause.
Through sampling and manual inspection, we will identify clusters that can be useful either as sets of positive
case training examples or negative case training examples. The algorithm looks for users in our heterogeneous
graph who’s behavior displays social similarity in the co-mention, co-following, and user x hashtag graphs. It
then returns only users who are co-clustered across each of these three graphs. Often times the groups that
are returned display a clear activist cause.
# Chunk 4a: find EAC clusters
eacObj=EAC(nodes=a$userID,F,M,A=Ah,min.user=100)

The function checkEACOutput() enables the user to sample user clusters via html output. Each time
the user is prompted for feedback, an html file is written to facilitate labeling. As you work through this
output, the accounts you inspect will highlight the need for regional expertise and ultimately the need for an
analyst-oriented user interface see principles of user-centered design. The user can click on the hyperlink and
inspect each detected user’s Twitter profile and timeline. For this exercise, if more than 80% of users within a
given cluster appear to be pro-Maidan we would label that entire cluster as “pos” for positive case. Similarly,
if more than 80% appear to be anti-Maidan we will label the cluster “neg.” Both positive and negative case
instances are informative for our classifier. For the remainder of the tutorial we will use pre-inspected sets of
each group, but feel free to develop your own using code Chunk 3b.
#Chunk 3b: Inspect EAC Clusters and Develop Training Data
L=checkEACOutput(a=a,eacObj=eacObj)
proMaidan=L$pos
antiMaidan=L$neg
proMaidanClusters=unique(eacObj$users$eac[eacObj$users$userID %in% posIDs])
antiMaidanClusters=unique(eacObj$users$eac[eacObj$users$userID %in% negIDs])
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Phase 5: Detect the Euromaidan Supporting Community

We now develop and train a classifier to detect pro-Maidan community members in the same manner we
identified official accounts. In this case we will use positive examples detected with EAC clustering and
a combination of negative instance EAC output and randomly selected accounts. It is important to have
both positive case and negative case EAC output in your training set, because it enables the classifier to
distinguish between dense subgraphs based on content. Again we build our train, test, and classification data
sets using our proMaidan users as positive case training examples. Our negative case instances will consist of
1000 randomly selected accounts and accounts we labelled as anti-Maidan.
# Chunk 5a:Develop list of training data, testing data, and data for classification
load('RData/euromaidan_featuresSpace.RData')
load('RData/euromaidan_eacObject.RData')
T=trainTestSplit(nodeIDs=A$table$userID,

feature_set=A$features,
posIDs=proMaidan,
negIDs=antiMaidan,
randomNegCount=1000,
p.test.split=.4)

Again, you can control what features are incorporated using the file featureSet.csv. Now we develop our
classifier and evaluate performance on 40% of our labelled data.
# Chunk 5b: Model Development
classifier(data_list=T,

algorithm='randomForest',
evaluation=TRUE,
metric='Kappa',
ratio=.5,
feature_import=TRUE,
label='proMaidan')

Once we are sufficiently pleased with performance of the classifier, we train based on all of our labelled data
and apply the classifier to our unlabeled data. Again we inspect the results via html pages is the directory
“pages”.
# Chunk 5c: Train and Apply Classifier, Detect the Euromaidan Supporting Community, and inspect results
predicted=classifier(data_list=T,

algorithm='randomForest',
evaluation=FALSE,
metric='Kappa',
ratio=.5,
feature_import=TRUE)

#inspect results
pageIt(data.frame(link=hyperlink(a$ScreenName[a$userID %in% sample(predicted,20)])),'predicted.proMaidan','pages')
not_predicted=T$predictIDs[!(T$predictIDs %in% predicted)]
pageIt(data.frame(link=hyperlink(a$ScreenName[a$userID %in% as.numeric(sample(not_predicted,20))])),'not_predicted.proMaidan','pages')
proMaidanIDs=c(proMaidan,predicted)
write.csv(data.frame(userIDs=proMaidanIDs),row.names=FALSE,file='proMaidanIDs.csv')
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Phase 6: Detect the Anti-Maidan Community

Here we use the same procedure but simply change which examples we use as negative case and positive case
instances to detect anti-Maidan community members.
# Chunk 6a:Develop list of training data, testing data, and data for classification
T=trainTestSplit(nodeIDs=A$table$userID,

feature_set=A$features,
negIDs=proMaidan,
posIDs=antiMaidan,
randomNegCount=1000,
p.test.split=.4)

# Chunk 6b: Model Development
classifier(data_list=T,

algorithm='randomForest',
evaluation=TRUE,
metric='Kappa',
ratio=.5,
feature_import=TRUE,
label='antiMaidan')

# Chunk 6c: Train and Apply Classifier, Detect the Euromaidan Supporting Community, and inspect results
predicted=classifier(data_list=T,

algorithm='randomForest',
evaluation=FALSE,
metric='Kappa',
ratio=.5,
feature_import=TRUE)

#inspect results
pageIt(data.frame(link=hyperlink(a$ScreenName[a$userID %in% sample(predicted,20)])),'predicted.antiMaidan','pages')
not_predicted=T$predictIDs[!(T$predictIDs %in% predicted)]
pageIt(data.frame(link=hyperlink(a$ScreenName[a$userID %in% as.numeric(sample(not_predicted,20))])),'not_predicted.antiMaidan','pages')
antiMaidanIDs=c(antiMaidan,predicted)
write.csv(data.frame(userIDs=antiMaidanIDs),row.names=FALSE,file='antiMaidanIDs.csv')

Conclusion

We started with a set of over 92,000 Twitter users and in less than two hours were able to detect distinct
communities of 7500 Euromaidan Supporters and 6000 anti-Euromaidan users which can be used for many
unique information extractions. What news sources or fake news sources dominate each community? Who
are the key voices in each community? What type of bot activity is observed in each community? We have
used this pipeline to study Islamic-jihad-supporting communities as well as far-right political communities
in the United States with similar performance. The commonality across each detected group seems to be
their insularity. Although little is understood about how and why these groups form, our hope is that this
methodological pipeline will facilitate research devoted to these important questions. In a subsequent tuturial
we will conduct information extractions from the pro-Maidan community to highlight how detected activist
communities can inform strategic messaging.
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Function Documentation

function: buildBipratiteAdjacency()

Description builds an adjacency matrix from a bipartite edge list. This function, like buildDirectedGraph()
takes an ordered set of node names for the “Source” node class. However, the “Target” field in this edge list
is assumed to be of a different node class resulting in a bipartite graph. The output is a weighted adjacency
matrix in sparse matrix format.

Arguments nodes - a vector of ordered node names

edge_path - a file name / path pointing to the graph edge list. The graph edge list is assumed to have
field headers “Source” and “Target.” Source nodes must be listed in the nodes vector supplied in argument
1. Node names in the “Target” column will be assumed to be of a different node class. In the case of this
tutorial these are hash tags; however URLs or some other object could be used.

minUserCount - the minimum number of unique users to have used a unique node of node class B. In the
case of this tutorial, the number of unique users who posted a particular hash tag. Because we are interested
in clustering users based on hashtags, the graph can be reduced significantly by trimming a large number of
edges that do not help provide community structure.

Value a weighted adjacency matrix where rows as users (node class A) and columns are node class B (hash
tags in this case)

function: buildDirectedGraph()

Description builds a directed weighted igraph graph with ordered node names. This function ensures that
subsequent calculations to fuse graph and node attributes have consistent naming convention enabling the
development of our heterogeneous annotated graph.

Arguments nodes - a vector of ordered node names

edge_path - a file name / path pointing to the graph edge list. The graph edge list is assumed to have field
headers “Source” and “Target” which contain node names listed in the nodes vector supplied in argument 1.

weighted - TRUE/FALSE

Value a weighted, directed igraph graph

function: classifier()

Description facilitates feature selection and training of a Multiplex Vertex Classification classifier. The
function recieves a trainTestObject (see trainTestSplit()) as input, and when in eval=FALSE mode, returns
performance data when the classifier is applied to test data. Once the model development is complete, set
EVAL=FALSE and the classifier will be trained on train and test data then applied to unlabelled data. In
this mode the function returns a list of userIDs predicted as positive case.

Arguments

data_list - a trainTestSplit object returned from the function trainTestSplit(). This object consists of 3
feature sets “train”, “test”, and “classify”. The first two have “class” labels, while the third does not.
algorithm - the classifier to be trained. The function calls either the packages carat or randomForest based
on the classifier selected. ‘randomForest’ generally returns the best results. evaluation - determines which
mode to run the function in. (see description for details) metric - defines which metric to minimize when
training the classifier. Because class distribution is often skewed in OEC detection, “Kappa” is the default.
ratio - the positive class ration required in leafs when using a Random Forrest classifier feature_import - the
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function classifierFeatures() outputs a file featureSet.csv that enables the user to easily remove features when
training the classifier. When set to true, the function uses only features selcted in the csv file.

Value When eval=FALSE model performance output is returned. When EVAL=FALSE a vector of positve
case userIDs is returned.

function: classifierFeatures()

Description

builds list containing two data frames. The first element “features” provides a set of numeric features where
rows refer to users and columns are each normalized numeric features. Standard node level features from the
node attribute table are normalized. Each directed graph is replicated as an undirected graph where ties are
based on minimum reciprocity (i.e. mode=‘mutual’ in as.undirected()). Centrality measures are extracted
in each graph and the k lead eigen vectors are extracted from both undirected graphs. The k lead vectors
associated with the left matrix of the SVD decomposition of the bipartite adjacency matrix Ah are extracted
as well. This provides a rich feature space which accounts for each graph within our heterogeneous graph as
well as information at the node level. A .csv table is also written to the working directory which can be read
externally by the function classifier() during model development.

Arguments

a - a data frame of node attributes

langDF - a data frame of language frequencies

F - the directed following graph ( igraph graph )

M - the directed, weighted mention graph ( igraph graph )

Ah - a weighted, bipartite adjacency matrix ( users x hashtags in this case) in sparse matrix format

k - the number of eigen vectors to extract for spectral features

Value

a data frame with the following fields:

User profile characteristics at the time of collection:

followerCount, followingCount, tweetCount, tweetsCollected, firstTweet (date), and lastTweet (date)

Summarized User Behavior

The tags f, m, rf, rm, and uht refer to the following, mention, co-following, co-mention, and user by hash tag
graphs respectively.

mentionRatio, urlRatio - the average number of mentions/urls per collected tweet (useful for simple bot
detection)

insularity_f,insularity_m - defines the proportion of following and mention ties that are represented in node
table a. This can be thought of as a metric of the users “topical isolation” in our data.

graph centrality measures - in each graph we calculate degree centralities, coreness, and PageRank.

graph spectral features - the k lead eigen vectors associated with each graph

language frequencies - ISO codes for respective languages as provided by the Twitter API.
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function: languageCast()

Description develops a data frame where rows are users and columns refer to unique languages detected in
our corpus of tweets. Each entry is the frequency with which user i tweets in language j.

Arguments

path - a file name / path to an edge list containing the fields userID, lang, and count

Value a data frame

function: trainTestSplit()

Description returns a trainTestSplit object which consists of a list of three feature spaces. The first two
provide a training and testing data for model evaluation and are labeled “train” and “test”. The last feature
space is labeled “classify” and consists of the unlabeled data to which a trained classifier will be applied.

Arguments

nodeIDs - The specific nodes within the feature set to be included in ouput

feature_set - an MVC feature set returned by the function classifierFeatures()

posIDs - a vector of positve case userIDs for training

negIDs - a vector of negative case userIDs for training

randomNegCount - the number of negative case instances to be selected randomly

p.test.split - the percentage of labelled data to be held out for evaluation

Value a data frame A list of 3 feature spaces. The first two provide a training and testing data for model
evaluation and are labeled “train” and “test”. The last feature space is labeled “classify” and consists of the
unlabeled data to which a trained classifier will be applied.

function: upLoad()

Description a specific implementation of the function fread from the package data.table. This function reads
in various delimited file structures and builds a data frame where strings are never converted to factors.

Arguments

path - a file name / path

Value a data frame
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Appendix C: Simulating OSN Data: Par-
tially Synthetic Graph Gen-
eration Through Modularity-
Based Recursive Stochastic Block
Modeling

C.1 Introduction

1.1 The problem of community detection has been widely studied within the context of large-
scale social networks (Fortunato; Papadopoulos et al., 2011). Community detection algorithms
attempt to identify groups of vertices more densely connected to one another than to the rest
of the network. Online social networks however present unique challenges due to their size
and high clustering coefficients Girvan and Newman (2002). Graph representations of online
social networks are further complicated by API rate limits Twitter, and users’ high social di-
mensionBoccaletti et al. (2006); Wang et al. (2010). Although a great deal of literature has been
devoted to finding cohesive groups within social media, evaluating community detection methods
remains a largely qualitative endeavor Peel et al..

Synthetic graphs often fail to preserve the topological qualities of OSNs making their use
for evaluation problematic. The performance of community detection algorithms is likely to be
different on graphs with different structure. We present modularity-based recursive stochastic
block modeling as a means to alter the community structure of real world graphs in a way that
preserves the graph’s topological qualities. This method is the first step towards a means to
evaluate performance of community detection algorithms on real world graphs when ground
truth is unknown. We recursively mine the graph’s substructure and randomly permute edges
until the recursion no longer returns sub-graphs larger than an established threshold. In this work
we show the degree with which the Louvain algorithm’s clusters change as the larger proportions
of the original graph are permuted. Additionally we investigate changes in topological features
as edges are randomly added or removed from the graph. Although we use the Louvain Grouping
algorithm Blondel et al. (2008), the same framework could be used to evaluate other community
detection algorithms or compare algorithms.

112



C.2 Background
Community Detection
The problem of community detection has been widely studied within the context of large-scale
social networks and is well documented in works like Fortunato (2010); Papadopoulos et al.
(2012). Community detection algorithms attempt to identify groups of vertices more densely
connected to one another than to the rest of the network. Social networks extracted from so-
cial media however present unique challenges due to their size and high clustering coefficients
(Girvan and Newman, 2002). Furthermore, ties in online social networks like Twitter are widely
recognized as having high social dimension, in that users ties represent different types of rela-
tionships (Boccaletti et al., 2006; Miller et al., 2011a; Wang et al., 2010). There are many classes
of community detection algorithms though we will discuss two in detail in this work: modularity-
based algorithms, and statistical inference based methods. Although this work merely presents
two classes of community detection algorithms, the problem of generating realistic ground-truth
data persists in all.

The Louvain Grouping algorithm presented in Blondel et al. (2008) is widely used for com-
munity optimization within the network science community. Louvain grouping uses a similar
objective function as the Newman-Girvan algorithm Newman and Girvan (2004), but is more
computationally efficient. In community optimization algorithms, the graph is partitioned into
k communities based on an optimization problem that centers on minimizing inter-community
connections where k is unspecified. Both Newman and Blondel find these communities by max-
imizing modularity. The modularity of a graph is defined in Equation C.1. In Equation C.1, the
variable Ai,j represents the weight of the edge between nodes i and j, ki =

∑
j Ai,j is the sum of

the weights of the edges attached to vertex i, ci is the community to which vertex i is assigned,
δ(u, v) is the inverse identity function, and m = 1

2

∑
i,j Ai,j .

Q =
1

2m

∑
i,j

= [Ai,j −
kikj
2m

]δ(ci, cj), (C.1)

An alternative to modularity based methods is statistical inference based approaches. Stochas-
tic block modeling attempts to decompose graphs into vertices with common properties through
statistical inference. In our case we will discuss methods to find groups of vertices with structural
equivalence or shared neighbors Lorrain and White. The stochastic block model can be learned
from real world data as a community detection method, and then used to recover a synthetic
representation of the original graph. In a detection scheme, the model decomposes the orignial
graph in k groups and calculates sub-graph density within each of the k defined groups, as well
as the (k × k) − k off-diagonal, bipartite subsets of the graph. These parameters can be used
along with an Erdos-Renyi model to recover a stochastic version of the original graph Mossel
et al..

Simulating OSN Data
Generating large synthetic networks is commonly done to test community detection algorithms.
In many cases simple stochastic block models are used as in Chen and Saad (2012). Alterna-
tively, researchers often use other stylized graphs like scale-free modelsBarabsi as in Danezis
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and Mittal; Eubank et al.. Other methods infer graphs based on real world data such as the meth-
ods presented in Barrett et al. Barrett et al.. In this case the authors generate large synthetic
social contact networks using real data to form synthetic contact networks based on physical co-
location of interacting people. They argue the result if a far superior representation than existing
random graph methods. However, in each of these cases a great deal of the real world graph’s
topology is lost.

C.3 Methods
Simulation Approach
Again, in this simulation we attempt the goal is to modify a real-world online social network’s
community structure while maintaining the graph’s topology. Such a method would enable re-
searchers to test algorithms for their ability to detect changes in subgraph modulatiry where the
degree of change is known. Formally we define the problem in two phases.

First, given a sparse, real world graph G(V,E) where, our goal is to detect clusters based on
structural equivalence Lorrain and White. We construct the graph M as follows:
• M , a u×u graph where and edge ei,j,M is defined as the argmin of the numbers of times ui

mentions uj and the numbers of times uj mentions ui. This is often referred to a reciprocal
mention network

In this work we use Louvain grouping to discover latent community structure within M
Blondel et al. (2008). Our second task is then to alter community structure in M in a manner
where styalistic qualities of the graph are retained. To do so we use the k groups defined by
the Louvain grouping algorithm and construct KM , a k × k matrix where Ki,j,M is defined as
the density of the off diagonal block betweet groups i and j. We can then use K to develop a
stochastic block model SM as defined in Faust and Wasserman. Each block larger than umin is
permuted by using Algorithm ??.

We extend Algorithm ?? by allowing for recursion within Louvain groups greater than size
umin. In theory, by recursively selecting edges for permutation within blocks we hope to retain
styalistic structure within the graph. To do so, we continue to exucute the Louvain Grouping
algorithm for all clusters larger than umin. Each cluster found that is less than or equal to umin

has α percent of its edges replaced with synthetic edges, as well as each off diagonal block within
the sub-graph. We define the recursion in Algorithm ??

INSERT ALGORITHM 2

C.4 Results
In this section we evaluate the sensitivity of the Louvain grouping algorithm Blondel et al. (2008)
to changes in network structure as re For the final paper I would like to conduct two virtual
experiments to answer the following questions:

Virtual Experiment 1: How well does Modularity-Based Recursive Stochastic Block Mod-
eling retain OSN graph characteristics as edges are randomly added or removed from the
original graph?
Virtual Experiment 2: How well does Modularity-Based Recursive Stochastic Block Mod-
eling retain OSN graph characteristics as the proportion of randomized edges increases?
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In both experiments we will use graph M , an undirected mention graph consisting of 8718
twitter users who actively blog about the ongoing conflict in Syria. Network characteristics of
M are listed in Table C.1. In each experiment we will vary α, the percentage of synthetic edges
generated and measure changes in clustering output.

Metric Value
Nodes 8718
Edges 22,066

Density 5.8× 10−4

Transitivity .099
Triad Count 793,579
Dyad Count 4068

Non-isolate Louvain Clusters 125 clusters / 5573 users

Table C.1: Summarizes M , an undirected mention graph consisting of 8718 twitter users who actively
blog about the ongoing conflict in Syria.

C.4.1 Virtual Experiment 1:
Recursively Selected Synthetic Edges

In this experiment we will define a sequence of α values ranging from 0 to 1. In each case we
will develop 100 replicates, and record the transitivity, dyad count, and triad count, we will also
measure the change in clustering output. To do so we define co-clustered users as the numer of
users who are clustered together in both the original graph and the permuted graph. Figure C.1
depicts the results of our experiment. The left panel depicts changes in output of the Louvain
group clustering algorithm Blondel et al. (2008) as the percentage of recursively permuted edges
increases. The x-axis depicts α. The y-axis depics the number of vertices that are clustered
together when compared to the Louvain output of the original graph. The plot shows that even
when the entire permuted graph consists of synthetic edges, over 4000 of the original 5000 co-
clustered users are retained. The source of this error appears to be related to increased graph
transitivity as α increases as depicted in the right panel of Figure C.1. It is likely that the reason
for this is the algorithm’s tendency to increase triads at the expense of dyads as α increases.
Figure C.2 depicts the relationship between dyad count and triad count. The large, gray circle
depicts α = 0, the original graph. Although retension of original community structure here ap-
pears strong, additional structure could be retained by ensuring triad counts are not dramatically
increased, however such extensions would likely cause significant computational expense and be
difficult to scale.

C.4.2 Virtual Experiment 2:
Adding or removing group modularity recursively

In this section we quantify changes in community structure when recursive stochastic block
modeling is used to add or remove modularity within a sub-graph. For this experiment we will
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Figure C.1: depicts the results of 100 replicates at 20 different values for α, the proportion of synthetic
edges recursively generated. The left panel depicts changes in output of the Louvain group clustering
algorithm Blondel et al. (2008) as the percentage of recursively permuted edges increase. The x-axis
depicts α. The y-axis depics the number of vertices that are clustered together when compared to the
Louvain output of the original graph. The plot shows that 80% of the clustering results of the original
graph are retained even when the graph is completely comprised of recursively selected synthetic edges.
The right panel depicts the algorithm’s tendency to increase graph transitivity as a larger proportion of
edges become synthetic. The x-axis depicts graph transitivity and the y-axis is the same as described in
the left panel.
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Figure C.2: depicts the results of 100 replicates at 20 different values of α. The x-axis depict triad count
while the y-axis depicts dyad count. The large, gray circle depicts α = 0, the original graph. As can be
seen recursive stochastic block modeling tends to generate more triads and fewer dyads that the original
graph, which could be the reason for changes in clustering output as α increases.

use the same original graph and add or remove α edges. In this experiment we select 40 values
of α ranging from −.5 to .5. We again generate 100 replicates for each α value and record the
transitivity, dyad count, and triad count, we will also measure the change in clustering output.
Figure C.4 depicts the results of 100 replicates at 40 different values for α. The left panel
depicts changes in output of the Louvain group clustering algorithm Blondel et al. (2008) as the
percentage of recursively added edges increases. The x-axis depicts α, the percentage of edges
added to the original graph. The y-axis depics the number of vertices that are clustered together
when compared to the Louvain output of the original graph. The right panel depicts levels of α
where edges are removed. The the plots show, the algorithms alters community structure most
when removing edges. This result implies that any large subgraph could have its modularity
increased while maintaining graph structure. Therefore, a graphs sub-structure could be altered
in a manner where the change is known. This enables a researcher to detect known changes from
a real world graph with unknown ground truth. Although further research is needed to compare
algorithms, and to understand what drives the change in each algorithm’s changes in performance
as synthetic edges are added, this method offers a step towards ground truth evaluation of real
world graphs at scale.

C.5 Conclusion
In this work we have presented modularity-based recursive stochastic graph permutation as a
means to alter the community structure of real world graphs in a way that preserves the graph’s
topological qualities. We have shown that this algorithm retains a great deal of the community

117



Figure C.3: depicts the results of 100 replicates at 40 different values for α. The left panel depicts changes
in output of the Louvain group clustering algorithm Blondel et al. (2008) as the percentage of recursively
added edges increases. The x-axis depicts α, the percentage of edges added to the original graph. The
y-axis depics the number of vertices that are clustered together when compared to the Louvain output of
the original graph. The right panel depicts levels of α where edges are removed. The the plots show, the
algorithms alters community structure most when removing edges.

Figure C.4: depicts the results of 100 replicates at 20 different values of α in both panels. The left panel
depicts α ∈ (0, .5) and the right panel depicts α ∈ (−.5, 0). The x-axes depict triad count while the
y-axes depicts dyad count. The large, gray circle depicts α = 0, the original graph.
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structure found in the real world graph when replacing all of the graphs edges with syntheti-
cally generated edges. Furthermore, we show the algorithms ability to maintain structure while
adding and subtracting edges to specific sub-graphs. This provides researchers a means to alter
real world graphs in order to evaluate community detection algorithms. Although the results
presented are encouraging, more study is needed to adjust for the algorithm’s inability to retain
dyadic and triadic closure. A formal method to compare detection algorithms is needed as well.
Finally, additional case studies are needed to see how well this method generalizes to other real
world graphs. However, this method represents a step forward in the evaluation of community
detection algorithnms.
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